早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求A的特征值与特征向量A=111111-1-11-11-11-1-11

题目详情
求A的特征值与特征向量
A=
1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
▼优质解答
答案和解析
|A-λE| =
1-λ 1 1 1
1 1-λ -1 -1
1 -1 1-λ -1
1 -1 -1 1-λ
ri+r1,i=2,3,4
1-λ 1 1 1
2-λ 2-λ 0 0
2-λ 0 2-λ 0
2-λ 0 0 2-λ
c1-c2-c3-c4
-2-λ 1 1 1
0 2-λ 0 0
0 0 2-λ 0
0 0 0 2-λ
= -(2+λ)(2-λ)^3.
所以,A的特征值为 2,2,2,-2.
A-2E=
-1 1 1 1
1 -1 -1 -1
1 -1 -1 -1
1 -1 -1 -1
-->
1 -1 -1 -1
0 0 0 0
0 0 0 0
0 0 0 0
(A-2E)X=0 的基础解系为:a1=(1,1,0,0)',a2=(1,0,1,0)',a3=(1,0,0,1)'
所以A的属于特征值2的全部特征向量为 c1a1+c2a2+c3a3,c1,c2,c3 不全为0
A+2E =
3 1 1 1
1 3 -1 -1
1 -1 3 -1
1 -1 -1 3
-->
1 0 0 1
0 1 0 -1
0 0 1 -1
0 0 0 0
(A+2E)X=0的基础解系为 a4=(-1,1,1,1)'
所以A的属于特征值-2的全部特征向量为 c4a4,c4为任意非零常数.