早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,AB=AE,AC=AD,∠BAE=∠CAD=90°.(1)证明:EC=BD;(2)证明:EC⊥BD;(3)如图2,连接ED,若N点为DE的中点,连接NA并延长与BC交于点M,证明:AM⊥BC.

题目详情
如图1,AB=AE,AC=AD,∠BAE=∠CAD=90°.
(1)证明:EC=BD;
(2)证明:EC⊥BD;
(3)如图2,连接ED,若N点为DE的中点,连接NA并延长与BC交于点M,证明:AM⊥BC.
▼优质解答
答案和解析
证明:(1)∵∠BAE=∠CAD=90°,
∴∠BAE+∠BAC=∠CAD+∠BAC,
∴∠CAE=∠BAD,
在△BAD和△EAC中,
BA=AE
∠BAD=∠EAC
AD=AC

∴△BAD≌△EAC(SAS),
∴EC=BD;

(2)∵△BAD≌△EAC,
∴∠D=∠ACE,
∵∠DAC=90°,
∴∠D+∠AMD=90°,
∵∠AMD=∠CMO,
∴∠ACE+∠CMO=90°,
∴∠COM=90°,
∴EC⊥BD;


(3)延长AN到H,使NH=AN,连接EH、DH,
∵N为DE中点,
∴四边形ADHE是平行四边形,
∴∠DHN=∠EAH,AE=DH=AB,
∵∠EAD+∠BAC=180°,∠EAD+∠ADH=180°,
∴∠ADH=∠BAC,
在△ADH和△ACB中,
AD=AC
∠ADH=∠BAC
DH=AB

∴△ADH≌△ACB(SAS),
∴∠AHD=∠B,
∵N、A、M是一条直线,
∴∠EAH+∠BAM=90°,
∴∠B+∠BAM=90°,
∴MN⊥BC.