早教吧 育儿知识 作业答案 考试题库 百科 知识分享

曲线x=t−sinty=1−cost在t=π2处的曲率半径R=2222.

题目详情
x=t−sint
y=1−cost
在t=
π
2
处的曲率半径R=
2
2
2
2
x=t−sint
y=1−cost
x=t−sint
y=1−cost
x=t−sint
y=1−cost
x=t−sint
y=1−cost
x=t−sintx=t−sinty=1−costy=1−cost
π
2
处的曲率半径R=
2
2
2
2
π
2
ππ22
2
2
2
2
2
2
2
2
2
2
2
2
▼优质解答
答案和解析
利用曲率的计算公式可得,
K(x)=
1
R
=|
y″
(1+y′2)
3
2
|.
因为
dy
dx
dy
dt
dx
dt
sint
1−cost

d2y
dx2
(
dy
dx
)t
dx
dt
=−
1
(1−cost)2

代入曲率的计算公式可得,
R=
(1+(
dy
dx
)2)
3
2
|
d2y
dx2
|

=
(1+
sin2t
(1−cost)2
)
3
2
1
(1−cost)2

=2
2
1−cost

将t=
π
2
代入可得,
R=
1
R
111RRR=|
y″
(1+y′2)
3
2
y″y″y″(1+y′2)
3
2
(1+y′2)
3
2
(1+y′2)
3
2
2)
3
2
3
2
333222|.
因为
dy
dx
dy
dt
dx
dt
sint
1−cost

d2y
dx2
(
dy
dx
)t
dx
dt
=−
1
(1−cost)2

代入曲率的计算公式可得,
R=
(1+(
dy
dx
)2)
3
2
|
d2y
dx2
|

=
(1+
sin2t
(1−cost)2
)
3
2
1
(1−cost)2

=2
2
1−cost

将t=
π
2
代入可得,
R=
dy
dx
dydydydxdxdx=
dy
dt
dx
dt
dy
dt
dy
dt
dy
dt
dydydydtdtdt
dx
dt
dx
dt
dx
dt
dxdxdxdtdtdt=
sint
1−cost
sintsintsint1−cost1−cost1−cost,
d2y
dx2
(
dy
dx
)t
dx
dt
=−
1
(1−cost)2

代入曲率的计算公式可得,
R=
(1+(
dy
dx
)2)
3
2
|
d2y
dx2
|

=
(1+
sin2t
(1−cost)2
)
3
2
1
(1−cost)2

=2
2
1−cost

将t=
π
2
代入可得,
R=
d2y
dx2
d2yd2yd2y2ydx2dx2dx22=
(
dy
dx
)t
dx
dt
(
dy
dx
)t(
dy
dx
)t(
dy
dx
dydydydxdxdx)tt
dx
dt
dx
dt
dx
dt
dxdxdxdtdtdt=−
1
(1−cost)2
111(1−cost)2(1−cost)2(1−cost)22,
代入曲率的计算公式可得,
R=
(1+(
dy
dx
)2)
3
2
|
d2y
dx2
|

=
(1+
sin2t
(1−cost)2
)
3
2
1
(1−cost)2

=2
2
1−cost

将t=
π
2
代入可得,
R=
(1+(
dy
dx
)2)
3
2
|
d2y
dx2
|
(1+(
dy
dx
)2)
3
2
(1+(
dy
dx
)2)
3
2
(1+(
dy
dx
dydydydxdxdx)2)
3
2
2)
3
2
3
2
333222|
d2y
dx2
||
d2y
dx2
||
d2y
dx2
d2yd2yd2y2ydx2dx2dx22|
=
(1+
sin2t
(1−cost)2
)
3
2
1
(1−cost)2

=2
2
1−cost

将t=
π
2
代入可得,
R=
(1+
sin2t
(1−cost)2
)
3
2
1
(1−cost)2
(1+
sin2t
(1−cost)2
)
3
2
(1+
sin2t
(1−cost)2
)
3
2
(1+
sin2t
(1−cost)2
sin2tsin2tsin2t2t(1−cost)2(1−cost)2(1−cost)22)
3
2
3
2
333222
1
(1−cost)2
1
(1−cost)2
1
(1−cost)2
111(1−cost)2(1−cost)2(1−cost)22
=2
2
1−cost

将t=
π
2
代入可得,
R=
2
2
2
22
1−cost

将t=
π
2
代入可得,
R=
1−cost
1−cost
1−cost1−cost.
将t=
π
2
代入可得,
R=
π
2
πππ222代入可得,
R=