早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,

题目详情
▼优质解答
答案和解析
容易验证:
(A^-1)(A+B)(B^-1)=B^-1+A^-1.**
由于可逆阵的逆阵可逆,可逆阵的乘积可逆,由上式知:A^-1 +B^-1可逆.
再由性质:(AB)^-1=(B^-1)(A^-1)
由(**)式,两端取逆,得:
(A^-1 +B^-1)^-1=
=[(B^-1)]^-1}[(A+B)^-1][(A^-1)^-1]
=(B)[(A+B)^-1](A)