早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知a>b>0,则a2+1/ab+1/a(a-b)的取值范围是?

题目详情
▼优质解答
答案和解析
因为a^2=a^2-ab+ab=a(a-b)+ab,
所以a^2+1/ab+1/a(a-b)
=ab+1/ab+a(a-b)+1/a(a-b)
≥2+2=4,
所以a^2+1/ab+1/a(a-b)的取值范围是[4,+∞)