早教吧作业答案频道 -->数学-->
已知(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)(1)求a0及Sn=a1+2a2+3a3+…+nan;(2)试比较Sn与n3的大小,并说明理由.
题目详情
已知(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)
(1)求a0及Sn=a1+2a2+3a3+…+nan;
(2)试比较Sn与n3的大小,并说明理由.
(1)求a0及Sn=a1+2a2+3a3+…+nan;
(2)试比较Sn与n3的大小,并说明理由.
▼优质解答
答案和解析
(1)取x=1,可得 a0=2n. …(1分)
对等式两边求导,得n(x+1)n−1=a1+2a2(x−1)+3a3(x−1)2+…+nan(x−1)n−1,
取x=2,则Sn=a1+2a2+3a3+…+nan=n•3n−1. …(4分)
(2)要比较Sn与n3的大小,即比较:3n-1与n2的大小,
当n=1,2时,3n-1<n2; 当n=3时,3n-1=n2; 当n=4,5时,3n-1>n2. …(6分)
猜想:当n≥4时,3n-1>n2,下面用数学归纳法证明:
由上述过程可知,n=4时结论成立,
假设当n=k,(k≥4)时结论成立,即3k-1>k2,
当n=k+1时,3(k+1)-1=3•3k-1>3k2.
而3k2-(k+1)2=2k2-2k-1=2k(k-1)-1≥2×4×3-1=23>0,
∴3(k+1)-1>3•3k-1>3k2>(k+1)2,故当n=k+1时结论也成立,
∴当n≥4时,3n-1>n2成立. …(11分)
综上得,当n=1,2时,Sn<n2; 当n=3时,Sn=n2;当n≥4,n∈N*时,Sn>n2.…(12分)
对等式两边求导,得n(x+1)n−1=a1+2a2(x−1)+3a3(x−1)2+…+nan(x−1)n−1,
取x=2,则Sn=a1+2a2+3a3+…+nan=n•3n−1. …(4分)
(2)要比较Sn与n3的大小,即比较:3n-1与n2的大小,
当n=1,2时,3n-1<n2; 当n=3时,3n-1=n2; 当n=4,5时,3n-1>n2. …(6分)
猜想:当n≥4时,3n-1>n2,下面用数学归纳法证明:
由上述过程可知,n=4时结论成立,
假设当n=k,(k≥4)时结论成立,即3k-1>k2,
当n=k+1时,3(k+1)-1=3•3k-1>3k2.
而3k2-(k+1)2=2k2-2k-1=2k(k-1)-1≥2×4×3-1=23>0,
∴3(k+1)-1>3•3k-1>3k2>(k+1)2,故当n=k+1时结论也成立,
∴当n≥4时,3n-1>n2成立. …(11分)
综上得,当n=1,2时,Sn<n2; 当n=3时,Sn=n2;当n≥4,n∈N*时,Sn>n2.…(12分)
看了 已知(x+1)n=a0+a1...的网友还看了以下:
.定义:设有限集合A={x|x=ai,i≤n,i∈N+,n∈N+},S=a1+a2+…+an,则S 2020-04-25 …
当n为正整数时,定义函数N(n)表示n的最大奇因数.如N(3)=3,N(10)=5,….记S(n) 2020-05-13 …
当n为正整数时,定义函数N(n)表示n的最大奇因数.如N(3)=3,N(10)=5,….记S(n) 2020-05-13 …
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n> 2020-05-16 …
在数字1,2,…,n(n≥2)的任意一个排列A:a1,a2,…,an中,如果对于i,j∈N*,i< 2020-06-12 …
若该图表示上半年a、b两月(a月早于b月).则①、②、③、④四地纬度依次是()A.665°N、66 2020-06-23 …
找规律1,5,16,44,134,178数列{an},a1=1,S(n+1)=4an+2,求通项a 2020-07-17 …
设A、B均为有限集,A中的元素个数为m,B中的元素的个数为n,A∪B中的元素的个数为s,则下列式子 2020-08-01 …
已知数列{an}的首项a1≠0,其前n项的和为SnSn+2无穷等比数列{a(n)}的首项a1=1, 2020-08-02 …
已知直线ln:y=-n+1nx+1n(n是不为零的自然数).当n=1时,直线l1:y=-2x+1与x 2020-10-31 …