早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高二基本不等式题已知a>=0,b>=o,a+b=1,则根号下(a+1/2)+根号下(b+1/2)的取值范围是?请使用基本不等式解答本题,并写清楚过程,

题目详情
高二基本不等式题
已知a>=0,b>=o,a+b=1,则根号下(a+1/2)+根号下(b+1/2)的取值范围是?
请使用基本不等式解答本题,并写清楚过程,
▼优质解答
答案和解析
a>=0,b>=o,a+b=1,0≤a,≤1,0≤b≤1,b=1-a
√(a+1/2)+√(b+1/2)=√(a+1/2)+√(3/2-a)=y
对y求导,y'=1/[2√(a+1/2)]-1/[2√(3/2-a)]
当y'=0时取得极值,即1/[2√(a+1/2)]=1/[2√(3/2-a)],解得a=1/2∈[0,1],此时b=1-a=1/2
此时y(1/2)=√(1/2+1/2)+√(3/2-1/2)=1+1=2
而端点值y(0)=√(0+1/2)+√(3/2-0)=(√2+√6)/2
y(1)=√(1+1/2)+√(3/2-1)=(√2+√6)/2
∴√(a+1/2)+√(b+1/2)的取值范围为:[(√2+√6)/2,2]