早教吧作业答案频道 -->其他-->
设f(x)的原函数F(x)>0,且f(x)F(x)=1/(e^x+e^-x),F(0)=√(π/2),求证f(x)=e^x/(1+e^2x)√(2arctane^x)rt
题目详情
设f(x)的原函数F(x)>0,且f(x)F(x)=1/(e^x+e^-x),F(0)=√(π/2),求证f(x)=e^x/(1+e^2x)√(2arctane^x)
rt
rt
▼优质解答
答案和解析
f(x)F(x)=1/(e^x+e^-x)
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
let
y = e^x
dy = e^xdx
∫ dx/[e^x+e^(-x)]
= ∫dy/(y^2+1)
= arctany + C1
= arctan(e^x) + C1
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
[F(x)]^2/2 =arctan(e^x) + C1
put x=0
π/4 = π/4 + C1
C1=0
[F(x)]^2/2 =arctan(e^x)
F(x) = √[ 2arctan(e^x)]
f(x) =F'(x)
=(1/[2√[ 2arctan(e^x)] ] ) .[2e^x/(1+e^(2x)]
= e^x/[(1+e^2x)√(2arctan(e^x))]
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
let
y = e^x
dy = e^xdx
∫ dx/[e^x+e^(-x)]
= ∫dy/(y^2+1)
= arctany + C1
= arctan(e^x) + C1
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
[F(x)]^2/2 =arctan(e^x) + C1
put x=0
π/4 = π/4 + C1
C1=0
[F(x)]^2/2 =arctan(e^x)
F(x) = √[ 2arctan(e^x)]
f(x) =F'(x)
=(1/[2√[ 2arctan(e^x)] ] ) .[2e^x/(1+e^(2x)]
= e^x/[(1+e^2x)√(2arctan(e^x))]
看了 设f(x)的原函数F(x)>...的网友还看了以下:
设函数f(x)=lnx+x+a,若曲线y=e-12sinx+e+12上存在点(x0,y0)使得f( 2020-05-15 …
高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与 2020-05-16 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
设f(x)的原函数F(x)>0,且f(x)F(x)=1/(e^x+e^-x),F(0)=√(π/2 2020-05-21 …
设矩阵A=(1000,-2300,0-450,00-67),且B=(E+设矩阵A=(1000,-2 2020-07-17 …
设定圆(x+根号3)^2+y^2=16,动圆N过点F(根号3,0)且与圆M相切,记圆心N的轨迹为E 2020-07-26 …
在实际生产中冷端温度往往不为零摄氏度,而是某一温度t1,实际设备的温度为t,则测得热电势为()a: 2020-07-29 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …