早教吧作业答案频道 -->数学-->
x,y,z在0°到90°,且x+y+z=90°,求tanx,tany,tanz的最大值
题目详情
x,y,z在0°到90°,且x+y+z=90°,求tanx,tany,tanz的最大值
▼优质解答
答案和解析
Tan[x] Tan[y] Tan[z]
= Tan[x] Tan[y] Tan[90°- (x+y)]
=(Tan[x] Tan[y])/Tan[x + y]
对x求偏导得
Cos[2 x + y] Csc[x + y]^2 Sec[x]^2 Sin[y] Tan[y]
令其偏导为0得,
Cos[2 x + y]=0,于是2x+y=90°,
类似地对y求偏导令其偏导为0得,2y+x=90°,
于是x=y=30°,z=90°-x-y=30°,
于是Tan[x] Tan[y] Tan[z]的极值为
Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245
比较一下,Tan[15°] Tan[30°] Tan[45°]=(2 - Sqrt[3])/Sqrt[3]≈0.154701
于是知道Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245应该是极大值,
再考虑边界,边界上的x,y,z中必有一个为0,
于是Tan[x] Tan[y] Tan[z]=0,
极大值大于边界值,所以,极大值即为最大值.
即当x=y=30°,z=30°,时,可取最大值,最大值为1/(3 Sqrt[3])≈0.19245
= Tan[x] Tan[y] Tan[90°- (x+y)]
=(Tan[x] Tan[y])/Tan[x + y]
对x求偏导得
Cos[2 x + y] Csc[x + y]^2 Sec[x]^2 Sin[y] Tan[y]
令其偏导为0得,
Cos[2 x + y]=0,于是2x+y=90°,
类似地对y求偏导令其偏导为0得,2y+x=90°,
于是x=y=30°,z=90°-x-y=30°,
于是Tan[x] Tan[y] Tan[z]的极值为
Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245
比较一下,Tan[15°] Tan[30°] Tan[45°]=(2 - Sqrt[3])/Sqrt[3]≈0.154701
于是知道Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245应该是极大值,
再考虑边界,边界上的x,y,z中必有一个为0,
于是Tan[x] Tan[y] Tan[z]=0,
极大值大于边界值,所以,极大值即为最大值.
即当x=y=30°,z=30°,时,可取最大值,最大值为1/(3 Sqrt[3])≈0.19245
看了 x,y,z在0°到90°,且...的网友还看了以下:
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
matlab在求解微分方程时遇到的问题我用的是R2008a的版本,在输入symsy;y=dsolv 2020-06-02 …
先求因式分解Z^3-1=0分解到(Z-1)(Z-X)(Z-X)的形式然后分解Z^4-1=0和Z^5 2020-06-12 …
设集合M={u|u=12m+8n+4l,m,n,l属于Z}N={t|t=20p+16q+12r,p 2020-06-18 …
设w是1的n次根,w不等于1,求证w满足的方程1+z+z^2+z^3+...+z^n-1=0.w是 2020-06-22 …
由代数式的乘法法则类比推导向量的数量积的运算法则:①m•n=n•m类比得到a•b=b•a;②(m+ 2020-06-27 …
1.设集合M={X|X=3K,K∈Z},P={X|X=3K+1,K∈Z},Q={X|X=3K-1} 2020-07-30 …
x=f1(s,t)y=f2(s,t)z=f3(s,t)用matlab计算出F(x,y,z)=0x=f 2020-11-01 …
A.陆厥(jué)招徕(lái)橘颂(jú)风流倜傥(tì)B.寒砧(zhēn)殷红(yīn)锭药( 2021-01-20 …