早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义一种对正整数n的F运算定义一种对正整数n的"F"运算1.当n为奇数时,结果为3n+5;2.当n为偶数时,结果为n/2k(2的k次方)(其中k是使原式为奇数的正整数),并且运算重复进行.例如,取n=26,则:2

题目详情
定义一种对正整数n的F运算
定义一种对正整数n的"F"运算1.当n为奇数时,结果为3n+5;2.当n为偶数时,结果为n/2k(2的k次方)(其中k是使原式为奇数的正整数),并且运算重复进行.例如,取n=26,则:
26F②→13F①→44F②→11……
若n=449,则第449次“F运算”的结果是———
▼优质解答
答案和解析
定义一种对正整数N的“F”运算:1 ,当N为奇数时,结果为3N+5 2,当N为偶数时,结果为2的K次方分之N(其中K为使2的K次方分之N为奇数的正整数),并运算重复进行,例如,取N=26,则26(F2,第一次)13(F1,第二次)44(F2,第三次)11...若N=449,则第449次运算结果是( 8)
n=449
第一次运算,得1352
第二次运算,得169 (k=3)
第三次运算,得512
第四次运算,得1 (k=9)
第五次运算,得8
第六次运算,得1 (k=3)
可以看出,从第四次开始,结果就只是1,8两个数轮流出现
且当次数为偶数时,结果是1,次数是奇数时,结果是8
而449次是奇数
因此最后结果是8