早教吧 育儿知识 作业答案 考试题库 百科 知识分享

为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]为什么n(n+1)(n+2)(n+3)可拆成1/5[n(n+1)(n+2)(n+3)(n+4)-(n-1)n(n+1)(n+2)(n+3)]

题目详情
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
为什么n(n+1)(n+2)(n+3)可拆成1/5[n(n+1)(n+2)(n+3)(n+4)-(n-1)n(n+1)(n+2)(n+3)]
▼优质解答
答案和解析
把式子整体来看,可设n(n+1)(n+2)=X n(n+1)(n+2)(n+3)=Y
代进你所列出的式子得出:1/4[X(n+3)-X(n-1)] 化简出来就是=X
1/5[Y(n+4)-Y(n-1)]化简出来也是=Y
我还可以举出例子1/6[n(n+1)(n+2)(n+3)(n+4)(n+5)-n(n-1)(n+1)(n+2)(n+3)(n+4)]=n(n+1)(n+2)(n+3)(n+4),
这个是个比较特殊的定向规律,你只需要记住就行了,这个能解决很多数学上的数列问题.