早教吧 育儿知识 作业答案 考试题库 百科 知识分享

顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~

题目详情
顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~
▼优质解答
答案和解析
是X~π(λ)泊松分布
证明:
P{X=k}=λ^k*e^(-λ)/k!
π(μ)
P{Y=k}=μ^k*e^(-μ)/k!
Z=X+Y
P{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}
=∑(i=0,...k)[λ^i*e^(-λ)/i!]*[μ^(k-i)*e^(-μ)/(k-i)!]
=∑(i=0,...k)[λ^i*μ^(k-i)*e^(-λ-μ)]/[i!*(k-i)!]
=e^(-λ-μ)∑(i=0,...k)[λ^i*μ^(k-i)]/[i!*(k-i)!]
=e^(-λ-μ)∑(i=0,...k){k!/[i!*(k-i)!]}*[λ^i*μ^(k-i)]/k!
=e^(-λ-μ)∑(i=0,...k)[C(k,i)*λ^i*μ^(k-i)]/k!
=e^(-λ-μ)*(λ+μ)^k/k!