早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列难题为什么?12.已知数列{an}的前n项和Sn=n^2(n∈N),数列{bn}为等比数列,且满足b1=a1,2b3=b4(1)求数列{an},{bn}的通项公式;(2)求数列{anbn}的前n项和.

题目详情
数列难题 为什么?
12.已知数列{an}的前n项和Sn=n^2(n∈N),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.
▼优质解答
答案和解析
1问:
n≥2时 an=Sn-S(n-1)
=n²-(n-1)²
=2n-1n=1时,
n=1时,a1=S1=1上式成立
∴an=2n-1
∵数列{bn}为等比数列∴ b1=a1=2*1-1=1
∵2b3=b4 ∴q=b4/b3=2
∴bn=1*2^(n-1)=2^(n-1)
2问:
Tn=a1*b1+a2*b2+a3*b3+……+an*bn
∴Tn=1*1+3*2^1+5*2^2+……+(2n-1)*2^(n-1) ①
①×2:
2Tn=1*2^1+3*2^2+5*2^3+……+(2n-3)*2^(n-1)+(2n-1)*2^n ②
②-①:
-Tn=1*1+(3-1)*2¹+(5-3)*2²+(7-5)*2³+……+[(2n-1)-(2n-3)]*2^(n-1)-(2n-1)*2^n
=1+2*[2¹+2²+2³+……+2^(n-1)]-(2n-1)*2^n
=1+4*[1-2^(n-1)]/(1-2)-(2n-1)*2^n
=1+2*2^n-4-(2n-1)*2^n
=-(2n-3)*2^n-3
∴Tn=(2n-3)*2^n+3