早教吧作业答案频道 -->数学-->
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,求证:(1)EF⊥A1C(2)平面AB1D1∥平面EFG.
题目详情
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,求证:
(1)EF⊥A1C
(2)平面A B1D1∥平面EFG.
(1)EF⊥A1C
(2)平面A B1D1∥平面EFG.
▼优质解答
答案和解析
(1)连结BD,
∵EF为△BCD的中位线,∴EF∥BD,
∵四边形ABCD为正方形,得BD⊥AC,∴EF⊥AC,
又∵正方体中,AA1⊥面ABCD,EF⊂面ABCD,∴AA1⊥EF,
∵AA1、AC是平面AA1C内的相交直线,
∴EF⊥平面AA1C,
又∵A1C⊂平面EFG,∴EF⊥A1C.
(2)连结C1D
∵△CC1D中,F、G分别是CD、CC1的中点,∴FG∥C1D
∵正方体ABCD-A1B1C1D1中,AD
B1C1,
∴四边形ADB1C1是平行四边形,可得AB1∥C1D
因此FG∥AB1
∵FG⊄平面AB1D1,AB1⊂平面AB1D1,∴FG∥平面AB1D1
同理可得EF∥平面AB1D1
∵FG、EF为平面EFG内的相交直线,∴平面A B1D1∥平面EFG.
∵EF为△BCD的中位线,∴EF∥BD,
∵四边形ABCD为正方形,得BD⊥AC,∴EF⊥AC,
又∵正方体中,AA1⊥面ABCD,EF⊂面ABCD,∴AA1⊥EF,
∵AA1、AC是平面AA1C内的相交直线,
∴EF⊥平面AA1C,
又∵A1C⊂平面EFG,∴EF⊥A1C.
(2)连结C1D
∵△CC1D中,F、G分别是CD、CC1的中点,∴FG∥C1D
∵正方体ABCD-A1B1C1D1中,AD
∥ |
. |
∴四边形ADB1C1是平行四边形,可得AB1∥C1D
因此FG∥AB1
∵FG⊄平面AB1D1,AB1⊂平面AB1D1,∴FG∥平面AB1D1
同理可得EF∥平面AB1D1
∵FG、EF为平面EFG内的相交直线,∴平面A B1D1∥平面EFG.
看了 如图,在正方体ABCD-A1...的网友还看了以下:
a、b、c是不等于0的实数,且1\a+1\b=1,1\b+1\c=2,1\c+1\a=5求a2b2c 2020-03-30 …
若a>b,则下列不等式正确的是:()A.1/ab^2C.a|c|>a|c|D.a/(c^2+1)> 2020-05-20 …
不等式误区a,b,c都为正,a+b+c=1求1/a^2+1/b^2+1/c^2的最小值帮我看一下我 2020-06-06 …
cos(A+C)/2怎么解cos(A+C)=2cos²[(A+C)/2]-1解出来这步,这步怎么来 2020-06-08 …
20.x^2/a^2+y^2/b^2+z^2/c^2=1成立;20.x^2/a^2+y^2/b^2 2020-06-11 …
1.已知a+b+c=0,a^2+b^2+c^=1,求:①ab+bc+ac的值②a^4+b^4+c^ 2020-07-09 …
关于一元三次方程的根,高分请踊跃回答!我已经化简了;x1=1/6/a*z-2/y/a/z-1/3* 2020-07-09 …
若实数a、b、c满足根号a+根号(b-1)+根号(c-2)=1/2(a+b+c),解这题里(a-2 2020-07-22 …
已知a,b,c为正实数,求证b/a^2+c/b^2+a/c^2>=1/a+1/b+1/c 2020-07-30 …
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/ 2020-11-06 …