早教吧作业答案频道 -->数学-->
椭圆基础题设椭圆(x^2/9)+(y^2/4)=1上的动点p(x,y)和定点A(a,0)(a>0)的距离的最小值
题目详情
椭圆基础题
设椭圆(x^2/9)+(y^2/4)=1上的动点p(x,y)和定点A(a,0)(a>0)的距离的最小值
设椭圆(x^2/9)+(y^2/4)=1上的动点p(x,y)和定点A(a,0)(a>0)的距离的最小值
▼优质解答
答案和解析
当a≥3时,显然动点p(x,y)和定点A(a,0)(a>0)的距离的最小值=a-3.
当a<3时,最小值应在P(x0,y0)取得,AP⊥椭圆过P的切线.
椭圆过P的切线方程:xx0/9+yy0/4=1.斜率=-4x0/9y0
AP斜率=y0/(x0-a)
∴y0/(x0-a)×[-4x0/9y0]=-1
解得x0=9a/5.注意x0≤3,a≤5/3.此时y0=√(4-36a²/25).
|AP|=2√(25-5a²)/5,
当5/3≤a<3时,距离是3-a.(只有P(3,0),AP⊥切线)
总之,a≥5/3时,p(x,y)和定点A(a,0)(a>0)的距离的最小值=|a-3|
5/3>a>0时,
p(x,y)和定点A(a,0)(a>0)的距离的最小值=2√(25-5a²)/5.
(5/3>a>0时.其实还有P(3,0),AP⊥切线,但容易计算:
此时3-a>2√(25-5a²)/5.请 thinkpaid 自己验证一下吧.)
当a<3时,最小值应在P(x0,y0)取得,AP⊥椭圆过P的切线.
椭圆过P的切线方程:xx0/9+yy0/4=1.斜率=-4x0/9y0
AP斜率=y0/(x0-a)
∴y0/(x0-a)×[-4x0/9y0]=-1
解得x0=9a/5.注意x0≤3,a≤5/3.此时y0=√(4-36a²/25).
|AP|=2√(25-5a²)/5,
当5/3≤a<3时,距离是3-a.(只有P(3,0),AP⊥切线)
总之,a≥5/3时,p(x,y)和定点A(a,0)(a>0)的距离的最小值=|a-3|
5/3>a>0时,
p(x,y)和定点A(a,0)(a>0)的距离的最小值=2√(25-5a²)/5.
(5/3>a>0时.其实还有P(3,0),AP⊥切线,但容易计算:
此时3-a>2√(25-5a²)/5.请 thinkpaid 自己验证一下吧.)
看了 椭圆基础题设椭圆(x^2/9...的网友还看了以下:
数学14455555圆A:(x+2)^2+y^2=1与点A(-2,0),B(2,0),分别说明满足 2020-05-12 …
2011年 东营中考数学题如图,直线与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆 2020-05-16 …
已知圆A的半径为3cm,圆B的半径为5CM,AB=14cm,p是线段AB上的一点,以p为圆心作圆p 2020-05-22 …
有一个基础的椭圆解析几何题请教各位大仙椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点为 2020-05-23 …
已知圆A和圆B的方程分别是(x+2)^2+y^2=25/4,(x-2)^2+y^2=1/4,动圆P 2020-06-09 …
已知圆x²+y²=9的圆心为P,点Q(a,b)在圆P外,以PQ为直径作圆M与圆P相交于A,B两点. 2020-06-09 …
高二的曲线基本题已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k 2020-06-10 …
矩形ABCD中AB=8BC=3根号5点P在边AB上BP=3AP圆P是以点P为圆心PD为半径的圆下列 2020-07-24 …
圆心A和圆心B是外离两圆,圆心A的半径为4,圆心B的半径为2,AB=8,P在AB上,PC切圆心A于 2020-07-26 …
在直角坐标系中,圆P的半径为一,圆心P的坐标为(0.2).若圆P绕着坐标原点0逆时针旋转,旋转角为a 2020-12-25 …