早教吧作业答案频道 -->数学-->
高二的曲线基本题已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k的直线l交椭圆于A,B两点,设线段AB中点M,连接QM,问k为何值时,直线QM过椭圆的顶点
题目详情
高二的曲线基本题
已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k的直线l交椭圆于A,B两点,设线段AB中点M,连接QM,问k为何值时,直线QM过椭圆的顶点
已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k的直线l交椭圆于A,B两点,设线段AB中点M,连接QM,问k为何值时,直线QM过椭圆的顶点
▼优质解答
答案和解析
当k=0时,M就是O点,符合题意
当k不等于0时,则AB的方程为y=k(x+2)
代入椭圆方程得到x^2(4+k^2)+4x*k^2+4k^2-4=0
判别式Δ=16k^4-16(4+k^2)(k^2-1)>0
所以k^2<4/3
设A(x1,y1)B(x2,y2)
则M((x1+x2)/2,(y1+y2)/2)
根据方程得x1+x2=-4k^2/(4+k^2)
而y1+y2=k(x1+2)+k(x2+2)=k(x1+x2+4)=16k/(4+k^2)
所以M(-2k^2/(4+k^2),8k/(4+k^2))
这理你画画图就知道,由于Q的位置决定了这种情况下只可能过顶点C(1,0)
现在问题就转化成CQM三点共线求k了.
CQ的方程为x+y=1,将M的坐标代入得到一个关于k的方程:3k^2-8k+4=0
所以k=2/3,k=2应该舍去,因为k^2<4/3
综上所述k=0或2/3
当k不等于0时,则AB的方程为y=k(x+2)
代入椭圆方程得到x^2(4+k^2)+4x*k^2+4k^2-4=0
判别式Δ=16k^4-16(4+k^2)(k^2-1)>0
所以k^2<4/3
设A(x1,y1)B(x2,y2)
则M((x1+x2)/2,(y1+y2)/2)
根据方程得x1+x2=-4k^2/(4+k^2)
而y1+y2=k(x1+2)+k(x2+2)=k(x1+x2+4)=16k/(4+k^2)
所以M(-2k^2/(4+k^2),8k/(4+k^2))
这理你画画图就知道,由于Q的位置决定了这种情况下只可能过顶点C(1,0)
现在问题就转化成CQM三点共线求k了.
CQ的方程为x+y=1,将M的坐标代入得到一个关于k的方程:3k^2-8k+4=0
所以k=2/3,k=2应该舍去,因为k^2<4/3
综上所述k=0或2/3
看了 高二的曲线基本题已知两点P(...的网友还看了以下:
道路勘察设计中竖曲线问题,书本上为什么可以把竖曲线(抛物线)的方程式直接设为y=x的平方/2r,r 2020-06-19 …
设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1,C2之间的距离,记作d( 2020-07-09 …
定义F(x,y)=(1+x)y,x,y∈(0,+∞),令函数f(x)=F(1,log2(x2-4x 2020-07-15 …
已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且 2020-07-20 …
已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x-3)2+y2=1相内切,记圆心 2020-07-21 …
设双曲线-=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且 2020-07-26 …
已知双曲线的两条渐近线为L1:y=[3]x和L2:y=-[3]x,其焦点在x轴上,实轴长为2设M是 2020-07-30 …
(2014•广州模拟)已知动圆C过定点M(0,2),且在x轴上截得弦长为4.设该动圆圆心的轨迹为曲 2020-07-30 …
设双曲线的右焦点为,过点作与轴垂直的直线交两渐近线于A,B两点,与双曲线的其中一个交点为,设O为坐 2020-08-01 …
(2011•自贡三模)设平面直角坐标中,O为原点,N为动点,|ON|=6,|ON=5•OM,过点M作 2020-11-12 …