早教吧作业答案频道 -->数学-->
如果f(t)=t/(1+t),g(t)=t/(1-t),证明:f(t)-g(t)=-2g(t²)
题目详情
如果f(t)=t/(1+t),g(t)=t/(1-t) ,证明:f(t)-g(t)=-2g(t²)
▼优质解答
答案和解析
f(t)-g(t)
=t/(1+t)-t/(1-t)
=t/(1+t)+t/(t-1)
=[t(t-1)/(1+t)(t-1)]+[t(t+1)/(t+1)(t-1)]
=(t²-t+t²+t)/(t+1)(t-1)
=2t²/(t²-1)
-2g(t²)
=-2t²/(1-t²)
=2t²/(t²-1)
左边等于右边
所以f(t)-g(t)=-2g(t²)成立
得证
=t/(1+t)-t/(1-t)
=t/(1+t)+t/(t-1)
=[t(t-1)/(1+t)(t-1)]+[t(t+1)/(t+1)(t-1)]
=(t²-t+t²+t)/(t+1)(t-1)
=2t²/(t²-1)
-2g(t²)
=-2t²/(1-t²)
=2t²/(t²-1)
左边等于右边
所以f(t)-g(t)=-2g(t²)成立
得证
看了 如果f(t)=t/(1+t)...的网友还看了以下: