早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在锐角△ABC中,sin(A+B)=35,sin(A-B)=513,则tan2B=.

题目详情
3
5
,sin(A-B)=
5
13
,则tan2B=______.
3
5
3355
5
13
,则tan2B=______.
5
13
551313
▼优质解答
答案和解析
∵锐角△ABC中,sin(A+B)=sinC=
3
5
,sin(A-B)=
5
13

∴A+B>90°,A-B<90°.
再由条件可得cos(A+B)=cosAcosB-sinAsinB=-
4
5

 cos(A-B)=cosAcosB+sinAsinB=
12
13

∴tan(A+B)=-
3
4
,tan(A-B)=
5
12
,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
3
5
333555,sin(A-B)=
5
13

∴A+B>90°,A-B<90°.
再由条件可得cos(A+B)=cosAcosB-sinAsinB=-
4
5

 cos(A-B)=cosAcosB+sinAsinB=
12
13

∴tan(A+B)=-
3
4
,tan(A-B)=
5
12
,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
5
13
555131313,
∴A+B>90°,A-B<90°.
再由条件可得cos(A+B)=cosAcosB-sinAsinB=-
4
5

 cos(A-B)=cosAcosB+sinAsinB=
12
13

∴tan(A+B)=-
3
4
,tan(A-B)=
5
12
,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
4
5
444555,
 cos(A-B)=cosAcosB+sinAsinB=
12
13

∴tan(A+B)=-
3
4
,tan(A-B)=
5
12
,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
12
13
121212131313.
∴tan(A+B)=-
3
4
,tan(A-B)=
5
12
,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
3
4
333444,tan(A-B)=
5
12
,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
5
12
555121212,∴tan2B=tan[(A+B)-(A-B)]=
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
tan(A+B)−tan(A−B)
1+tan(A+B)tan(A−B)
tan(A+B)−tan(A−B)tan(A+B)−tan(A−B)tan(A+B)−tan(A−B)1+tan(A+B)tan(A−B)1+tan(A+B)tan(A−B)1+tan(A+B)tan(A−B)=
3
4
5
12
1−
3
4
×
5
12
=-
7
11

故答案为:-
7
11
3
4
5
12
1−
3
4
×
5
12
3
4
5
12
3
4
5
12
3
4
333444−
5
12
5551212121−
3
4
×
5
12
1−
3
4
×
5
12
1−
3
4
333444×
5
12
555121212=-
7
11

故答案为:-
7
11
7
11
777111111,
故答案为:-
7
11
7
11
777111111.