早教吧作业答案频道 -->数学-->
求数学高人给出该数列题的解法(尽可能简便)已知数列{bn}满足b1=1,前n项和Bn=(3n2-n)/2(1)求bn通项(bn=3n+2)(2)设数列{an}满足条件:an=(1+1/bn)*a(n+1),且a1=2,试比较an与b(n+1)的立方根的大小,并且给
题目详情
求数学高人给出该数列题的解法(尽可能简便)
已知数列{bn}满足b1=1,前n项和Bn=(3n2-n)/2
(1)求bn通项(bn=3n+2)
(2)设数列{an}满足条件:an=(1+1/bn)*a(n+1),且a1=2,试比较an与b(n+1)的立方根的大小,并且给出证明
第二问的递推式等号右边改为a(n-1)
第一个通项是-2
已知数列{bn}满足b1=1,前n项和Bn=(3n2-n)/2
(1)求bn通项(bn=3n+2)
(2)设数列{an}满足条件:an=(1+1/bn)*a(n+1),且a1=2,试比较an与b(n+1)的立方根的大小,并且给出证明
第二问的递推式等号右边改为a(n-1)
第一个通项是-2
▼优质解答
答案和解析
(1)
bn=Bn-B(n-1)
=(3*n^2-n)/2-(3*(n-1)^2-(n-1))/2
=3n-2
n=1时,b1=1也成立.(题中给的bn=3n+2写错了吧)
(2)
an=(1+1/bn)*a(n+1)
转化一下就是
a(n+1)/an=bn/(bn+1)=(3n-2)/(3n-1)
这样就有:
an/a(n-1)=(3(n-1)-2)/(3(n-1)-1)=(3n-5)/(3n-4)
(n>=2)
.
.
.
a2/a1=1/2
两边相乘,左边两两相约,这样就有:
a(n+1)/a1=1/2*4/5*7/8*.*(3n-2)/(3n-1)
所以an=a1*1/2*4/5*7/8*.*(3n-5)/(3n-4)
(n>=2)
b(n+1)=3(n+1)-2=3n+1
当n=1时
a1=2
b2=7
a1>b2的立方根
当n>=2时
an=a1*1/2*4/5*7/8*.*(3n-5)/(3n-4)
an=2*1/2*4/5*7/8*.*(3n-5)/(3n-4)1
所以:
n=1时 an>b(n+1)的立方根
n>=2时 an
bn=Bn-B(n-1)
=(3*n^2-n)/2-(3*(n-1)^2-(n-1))/2
=3n-2
n=1时,b1=1也成立.(题中给的bn=3n+2写错了吧)
(2)
an=(1+1/bn)*a(n+1)
转化一下就是
a(n+1)/an=bn/(bn+1)=(3n-2)/(3n-1)
这样就有:
an/a(n-1)=(3(n-1)-2)/(3(n-1)-1)=(3n-5)/(3n-4)
(n>=2)
.
.
.
a2/a1=1/2
两边相乘,左边两两相约,这样就有:
a(n+1)/a1=1/2*4/5*7/8*.*(3n-2)/(3n-1)
所以an=a1*1/2*4/5*7/8*.*(3n-5)/(3n-4)
(n>=2)
b(n+1)=3(n+1)-2=3n+1
当n=1时
a1=2
b2=7
a1>b2的立方根
当n>=2时
an=a1*1/2*4/5*7/8*.*(3n-5)/(3n-4)
an=2*1/2*4/5*7/8*.*(3n-5)/(3n-4)1
所以:
n=1时 an>b(n+1)的立方根
n>=2时 an
看了 求数学高人给出该数列题的解法...的网友还看了以下:
数集A满足条件若a∈A则有(1+a)/(1-a)∈A(a≠1)数集A满足条件若a∈A则有(1+a) 2020-04-05 …
数列{an}的前n项和Sn=2n-1 ,数列{bn}满足b1=3 ,bn+1=an+bn(n 属于 2020-04-06 …
设正整数m,n满足1<n≤m,F1,F2,F3,…,Fk为集合{1,2,3,…,m}的n元子集,且 2020-05-14 …
数列{An}满足A1=1,An+1=An/2An+1 数列Bn的前n项和为Sn=12-12(2/3 2020-05-15 …
请教一道有关自然数的题目对任意正整数n,用S(n)表示满足不定方程1/x+1/y=1/n的正整数对 2020-06-08 …
问一道高中数学题已知函数f(x)=x/(1+x),(x>0),令g(x)=f(x)(1+x)^2, 2020-07-09 …
f(x)=(x+3)/(x+1)(x≠-1),数列|bn|满足bn=|an-√3|函数数列综合问题: 2020-11-19 …
已知f(x)=(x-1)平方,g(x)=4(x-1),数列an满足a1=2,已知f(x)=(x-1) 2020-11-27 …
1.数列an满足a1=1,且Sn=2an+n,求数列an的通项公式.1.数列an满足a1=1,且Sn 2020-12-05 …
某校购买了甲、乙两种不同的足球,其中购买甲种足球共花费2000元,购买乙种足球共花费1400元.己知 2020-12-08 …