早教吧作业答案频道 -->数学-->
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.
题目详情
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
▼优质解答
答案和解析
(1)证明:连接OA,
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切线.
(2) ∵BD是直径,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的长是1cm,
∴BD的长是4cm.
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切线.
(2) ∵BD是直径,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的长是1cm,
∴BD的长是4cm.
看了 如图,四边形ABCD内接于⊙...的网友还看了以下:
如图,正比例函数y=2x与反比例函数y=kx(k>0)的图象相交于A、C两点,过点A作AD垂直x轴 2020-04-08 …
如图,点E为正方形ABCD对角线BD上一点,EM垂直BC,EN垂直CD,垂足分别为M,N,连接AE 2020-05-16 …
已知任意三角型abc,过a点做垂线到bc命点e,过b点做垂线到ac命为f,过c点做垂线到ab命点d 2020-05-20 …
无图--延长ABCD的边CB至E,使CE=CA连接AEF是AE的中点,求证BF垂直FD延长矩形AB 2020-06-03 …
初二几何求证过程急急急在三角形ABC中,CE垂直AB于E,BF垂直AC于F,连接EF,D是EF的中 2020-06-06 …
已知面a,b,r,满足a垂直于r,b垂直于r,a交b=l,求证:l垂直于r已知面a,b,r,满足a 2020-07-12 …
如图.圆0为三角形ABc的外接圆.Bc为圆0的直径,作射线BF,使BA平分角cBF.过点A作AD垂 2020-07-30 …
如图,三角形中,角BAC=90°,AB=AC,AD垂直BC,垂足是D,AE平分角BAD,交BC于点 2020-07-30 …
在三角形ABC中,AD是BC边上的中线,角ADB=45度,角B=3角C,求证角BAC=90度真的看 2020-08-01 …
如图,在锐角△ABC中,∠ABC=2∠C,∠ABC的角平分线与AD垂直,垂足为D,求证:AC=2BD 2020-11-02 …