早教吧作业答案频道 -->数学-->
在数列{an}中,a1=1/2,a(n+1)-a(n)=1/4n^2-1,写出数列的前4项并求通项公式.
题目详情
在数列{a n}中,a1=1/2,a (n+1)-a (n)=1/4n^2-1,写出数列的前4项并求通项公式.
▼优质解答
答案和解析
a1=1/2
a2=a1+1/(4-1)=5/6
a3=a2+1/(16-1)=9/10
a4=a3+1/(36-1)=13/14
因此猜测an=(4n-3)/(4n-2)
下面用数学归纳法来证明:
(1)当n=1时,已经验证猜测是成立的
(2)假设当n=k时猜测成立,即有:ak=(4k-3)/(4k-2)
则当n=k+1时,
a(k+1)=ak+1/(4k^2-1)
=(4k-3)/(4k-2)+1/(4k^2-1)
=(4k-3)/2(2k-1)+1/(2k-1)(2k+1)
=[(4k-3)(2k+1)+2]/2(2k-1)(2k+1)
=(8k^2-2k-1)/2(2k-1)(2k+1)
=(8k^2-4k+2k-1)/2(2k-1)(2k+1)
=(4k+1)(2k-1)/2(2k-1)(2k+1)
=(4k+1)/(4k+2)
=[4(k+1)-3]/[4(k+1)-2]
可见,此时猜测亦成立.
故an=(4n-3)/(4n-2)
a2=a1+1/(4-1)=5/6
a3=a2+1/(16-1)=9/10
a4=a3+1/(36-1)=13/14
因此猜测an=(4n-3)/(4n-2)
下面用数学归纳法来证明:
(1)当n=1时,已经验证猜测是成立的
(2)假设当n=k时猜测成立,即有:ak=(4k-3)/(4k-2)
则当n=k+1时,
a(k+1)=ak+1/(4k^2-1)
=(4k-3)/(4k-2)+1/(4k^2-1)
=(4k-3)/2(2k-1)+1/(2k-1)(2k+1)
=[(4k-3)(2k+1)+2]/2(2k-1)(2k+1)
=(8k^2-2k-1)/2(2k-1)(2k+1)
=(8k^2-4k+2k-1)/2(2k-1)(2k+1)
=(4k+1)(2k-1)/2(2k-1)(2k+1)
=(4k+1)/(4k+2)
=[4(k+1)-3]/[4(k+1)-2]
可见,此时猜测亦成立.
故an=(4n-3)/(4n-2)
看了 在数列{an}中,a1=1/...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
数集A满足条件:若a∈A则(1+a)/(1—a)∈A(a≠1).若1/3∈A,求集合中的其他元素. 2020-04-06 …
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)=(a-1)[(a+1)(a^ 2020-05-22 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
1.已知x^2-4x+1=0,则x^4+1/x^4=2.如果方程a/(x-2)+3=(1-x)/( 2020-06-25 …
若关于x的方程x+2/x=c+2/c的解是x1=c,x2=2/c,则关于x的方程x+2/(x-1) 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
(a-1)(a+1)=?(a-1)(a^2+a+1)=?(a-1)(a^3+a^2+a+1)=?由 2020-07-21 …