早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设P是双曲线X2/4-Y2=1右支上任意一点,A1A2分别是左右顶点,0是原点,直线PA1、PO、PA2的斜率为K1、K、K2,则乘积K1KK2取值范围是什么?

题目详情
设P是双曲线X2/4-Y2=1右支上任意一点,A1A2分别是左右顶点,0是原点,直线PA1、PO、PA2的斜率为K1、K、K2,则乘积K1KK2取值范围是什么?
▼优质解答
答案和解析
由已知,a^2=4 ,b^2=1 ,因此 a=2 ,b=1 ,
所以 A1(-2,0),A2(2,0),设P(x,y),
则 k1kk2=[y/(x+2)]*(y/x)*[y/(x-2)]=y^3/[x(x^2-4)] ,
因为 y^2=x^2/4-1 ,
所以 k1kk2=y(x^2/4-1)/[x(x^2-4)]=y/(4x) ,
因为 (k1kk2)^2=y^2/(16x^2)=(x^2/4-1)/(16x^2)=1/64-1/(16x^2) ,
由 x>=2 ,x^2>=4 得 0<=(k1kk2)^2<1/64 ,
则 -1/8
作业帮用户 2017-11-02