早教吧作业答案频道 -->数学-->
a(n+1)=[(n+1)/n]an+(n+1)/2^n两边同除(n+1)得:a(n+1)/(n+1)=an/n+1/2^n这步不懂?b1=a1/1=1b(n+1)-bn=1/2^n还有这步不懂?
题目详情
a(n+1)=[(n+1)/n]an+(n+1)/2^n
两边同除(n+1)得:a(n+1)/(n+1)=an/n+1/2^n这步不懂?
b1=a1/1=1
b(n+1)-bn=1/2^n还有这步不懂?
两边同除(n+1)得:a(n+1)/(n+1)=an/n+1/2^n这步不懂?
b1=a1/1=1
b(n+1)-bn=1/2^n还有这步不懂?
▼优质解答
答案和解析
a(n+1)=[(n+1)/n]an+(n+1)/2^n,
a(n+1)/(n+1)=[(n+1)/n]*1/(n+1)*an+(n+1)/2^n*1/(n+1),
约分(n+1)得:
a(n+1)/(n+1)=an/n+1/2^n.
令bn=an/n,则b(n+1)=a(n+1)/(n+1).
故
b1=a1/1=1,
b(n+1)-bn=1/2^n
a(n+1)/(n+1)=[(n+1)/n]*1/(n+1)*an+(n+1)/2^n*1/(n+1),
约分(n+1)得:
a(n+1)/(n+1)=an/n+1/2^n.
令bn=an/n,则b(n+1)=a(n+1)/(n+1).
故
b1=a1/1=1,
b(n+1)-bn=1/2^n
看了 a(n+1)=[(n+1)/...的网友还看了以下:
已知数列{an}的前n项和为Sn,Sn=12(3n−1)(n∈N*),等差数列{bn}中,bn>0 2020-05-13 …
已知数列an的前n项和为Sn,a1且Sn=S(n-1)+a(n-1)+1/2,数列bn满足b1=- 2020-05-13 …
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b 2020-05-14 …
A(n,n)=n(n-1)(n-2)……·3·2·1怎么理解麻烦写下过程c(2,3)c(1,4)= 2020-05-14 …
已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{ 2020-05-15 …
等比数列{an}的前n项和为Sn,已知对任意n∈N+,点(n,Sn)均在函数y=(b的x次方)+r 2020-06-07 …
若数列{bn}满足,b1/a1+b2/a2+.+bn/an=1-1/2^n,n∈N+,求{bn}的 2020-07-23 …
已知数列{an}满足a1=1,a2=3,且an+2=(1+2|cosnπ2|)an+|sinnπ2| 2020-10-31 …
已知直线ln:yn=-[(n+1)/n]x+1/n(n是不为零的自然数).当n=1时,直线l1:y1 2020-10-31 …
已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则a1=(m−1)b− 2020-11-29 …