早教吧作业答案频道 -->数学-->
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关
题目详情
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.
(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
(3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC是等腰直角三角形?(直接写出结论,不必说明理由)
(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
(3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC是等腰直角三角形?(直接写出结论,不必说明理由)
▼优质解答
答案和解析
(1)证明:∵△ABD绕点A旋转得到△ACD′,
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE,
=∠BAD+∠CAE,
=∠BAC-∠DAE,
=120°-60°,
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SAS),
∴DE=D′E;
(2)∠DAE=
∠BAC.
理由如下:在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=
∠BAC;
(3)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=
CD′,
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=
BD.
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE,
=∠BAD+∠CAE,
=∠BAC-∠DAE,
=120°-60°,
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
|
∴△ADE≌△AD′E(SAS),
∴DE=D′E;
(2)∠DAE=
1 |
2 |
理由如下:在△ADE和△AD′E中,
|
∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=
1 |
2 |
(3)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=
2 |
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=
2 |
看了 已知△ABC中,AB=AC,...的网友还看了以下:
项数为奇数的等差数列,各奇数项之和为44,各偶数项之和为33,则中间一项为?设有n项则奇数项有(n 2020-04-09 …
数列{an}前8项的值各异,且a(n+8)=an,对任意的n∈N*都成立,则数列中可取遍{an}的 2020-04-26 …
若两个方程X2+aX+b=0和X2+bX+a=0则( )A a=b B a+b=0 C a+b=1 2020-05-16 …
求证:1\a(a+d)+1\(a+d)(a+2d)+.+1\[a+(n-2)d][a+(n-1)d 2020-06-12 …
a+(a+d)+(a+2d)+...+[a+(n-1)d]要说明理由 2020-06-12 …
14.If(a+b)^0.5=(a-b)^-0.5,whichofthefollowingmust 2020-06-20 …
等比数列1,a,a2,a3,…(a≠0)的前n项和为Sn=()A.1−an1−aB.1−an−11 2020-07-09 …
望高手赐教,高一数列……递推公式a(n+1)=[a(n)+a]/[a(n)+b]a,b皆为非零常数 2020-08-01 …
为了应用平方差公式计算(a+2b-1)(a-2b+1),下列变形正确的是()A.[(a+2b)-1 2020-08-02 …
高二数学选择题数列{an}的前8项的值各异,且a(n+8)=an对任意的n属于自然数都成立,则下列数 2020-11-03 …