早教吧 育儿知识 作业答案 考试题库 百科 知识分享

a,b∈正整数,a³+b³=2,证明a+b≤2

题目详情
a,b∈正整数,a³ +b³=2,证明a+b≤2
▼优质解答
答案和解析
如果a,b都是正整数那么结果很直接,因为a,b ≥ 1,所以a³ ≥ a,b³ ≥ b.
所以2 = a³+b³ ≥ a+b.(可以知道a = b =1).
我猜你的原题是a,b都是正实数.
可以因式分解a³+b³ = (a+b)(a²-ab+b²).
a²-ab+b² = ((a+b)²+3(a-b)²)/4 ≥ (a+b)²/4.
于是(a+b)³/4 ≤ a³ +b³ = 2,即有a+b ≤ 2.
如果学过幂平均不等式,那么直接有(a+b)/2 ≤ ((a³ +b³)/2)^(1/3) = 1.