早教吧 育儿知识 作业答案 考试题库 百科 知识分享

证明不等式是什么时候要论证等号的成立比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用柯西不等式证明a+b+c大于等于根号三”时不用证明何时等号成立;而“已知a,b为正实数,求证1\a+1\b大于等于4\(a

题目详情
证明不等式是什么时候要论证等号的成立
比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用柯西不等式证明a+b+c大于等于根号三”时不用证明何时等号成立;
而“已知a,b为正实数,求证1\a+1\b大于等于4\(a+b)"时要论证a,b,c取何值时才有等号成立?
▼优质解答
答案和解析
第一题打错了吧,应该是ab+bc+ca = 1.
就这两道题来说都不用讨论等号成立.
不管用什么方法,只要证出来a+b+c ≥ √3与1/a+1/b ≥ 4/(a+b)即可.
如果题目本身要求讨论等号成立条件,当然没话说.
如果没有这个要求,那就不用讨论.
不过多数题目都是可以取到等号的,如果多步放缩中等号不能同时成立,那就放过了.
因此等号成立条件常常为放缩指明方向.
另外,如果第一题换个说法,要求a+b+c的最小值,那就要验证等号能够成立.
因为最小值是需要能够取到的.
如果放缩过了,例如由4a²+b² ≥ 4ab,4b²+c² ≥ 4bc,4c²+a² ≥ 4ca,
得到5(a²+b²+c²) ≥ 4(ab+bc+ca) = 4,于是(a+b+c)² = a²+b²+c²+2(ab+bc+ca) ≥ 4/5+2 = 12/5.
证出来a+b+c ≥ 2√15/5,虽然结论是正确的,但2√15/5不是最小值,因为等号不能成立.
不过求最值的问题一般不用讨论所有取等情况,除非题目要求求出所有最值点(有时不唯一).