早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)在(0,﹢∞)内连续,证明∫f(2/x+x/2)·lnx/xdx=ln2∫f(2/x+x/2)·1/xdx∫上限是4,下限是1

题目详情
设函数f(x)在(0,﹢∞)内连续,证明∫f(2/x+x/2)·lnx/xdx=ln2∫f(2/x+x/2)·1/xdx
∫上限是4,下限是1
▼优质解答
答案和解析
令y=4/x,则y的范围仍然是4到1 我不会打记号,用int_1^4表示下限是1 上限是4的定积分
记M=int_1^4 f(2/x+x/2)·lnx/xdx=int_4^1 f(y/2+2/y)ln(4/y)*y/4d(4/y)
=int_1^4 f(2/y+y/2)(2ln2-lny)/ydy
=2ln2*int_1^4 f(2/y+y/2)/ydy-int_1^4 f(2/y+y/2)*lny/ydx=2ln2*int_1^4 f(2/y+y/2)/ydy-M
所以2M=2ln2*int_1^4 f(2/y+y/2)/ydy
M=ln2*int_1^4 f(2/y+y/2)/ydy
证毕.