早教吧作业答案频道 -->数学-->
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64=
题目详情
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64=
▼优质解答
答案和解析
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^16-1)(2^16+1)(2^32+1)-2^64
=(2^32-1)(2^32+1)-2^64
=2^64-1-2^64
=-1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)-2^64
=(2^16-1)(2^16+1)(2^32+1)-2^64
=(2^32-1)(2^32+1)-2^64
=2^64-1-2^64
=-1
看了 3(2^2+1)(2^4+1...的网友还看了以下:
1-2分之1+4分之1+8分之1+16分之1+32分之1+64分之1+128分之1+256分之1- 2020-04-07 …
12+32/(-2)^3-(-4)^2*515/(-5)+15/(-3)15/[(-5)*(-3) 2020-04-07 …
简便计算1.(+1)+(-3)+(+5)+(-7)+…+(+97)+(-99)2.1/2+1/3+ 2020-04-07 …
分式求和问题1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)为什么1/(2^k+1) 2020-04-26 …
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
请问1至12用不同排序可以有多少个组合.如下举例假设数字是1,2,排序有:1,2;2,1共二组排序 2020-06-11 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
=[-1+2(sinx)^2]/2+1/2-(sin2x)/2=(-1/2)(cos2x+sin2 2020-07-21 …