早教吧作业答案频道 -->数学-->
难,急,数列{An}的前n项和记为Sn,已知A1=1,A(n+1)=[(n+2)/n]Sn(n=1,2,3,…),求证:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4×An
题目详情
难,急,
数列{An}的前n项和记为Sn,已知A1=1,A(n+1)=[(n+2)/n]Sn(n=1,2,3,…),求证:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4×An
数列{An}的前n项和记为Sn,已知A1=1,A(n+1)=[(n+2)/n]Sn(n=1,2,3,…),求证:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4×An
▼优质解答
答案和解析
答:
1
a(n+1)=S(n+1)-Sn=[(n+2)/n]*Sn
S(n+1)=2(n+1)/n*Sn
S(n+1)/(n+1)=2*(Sn/n)
S1/1=a1=1
所以数列{Sn/n}是等比数列.
2
由S(n+1)/(n+1)=2*(Sn/n),由等比数列的通项公式知
Sn/n=2^(n-1)*S1/1=2^(n-1)
Sn=n*2^(n-1)
S(n+1)=(n+1)*2^n
an=Sn-S(n-1)=n*2^(n-1)-(n-1)*2^(n-2)=(n+1)*2^(n-2)
所以S(n+1)=4an
1
a(n+1)=S(n+1)-Sn=[(n+2)/n]*Sn
S(n+1)=2(n+1)/n*Sn
S(n+1)/(n+1)=2*(Sn/n)
S1/1=a1=1
所以数列{Sn/n}是等比数列.
2
由S(n+1)/(n+1)=2*(Sn/n),由等比数列的通项公式知
Sn/n=2^(n-1)*S1/1=2^(n-1)
Sn=n*2^(n-1)
S(n+1)=(n+1)*2^n
an=Sn-S(n-1)=n*2^(n-1)-(n-1)*2^(n-2)=(n+1)*2^(n-2)
所以S(n+1)=4an
看了 难,急,数列{An}的前n项...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
若M={x|n=x/2,n∈Z},N={x|n=x+1/2,n∈Z},则M∩N等于A.空集B.{空 2020-05-20 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1+1/2+1/3……+1/n,(n>1)证S(2^n)>1+n/2(n>=2,n属于N*)已知S 2020-07-22 …
二项式定理证明:(1)Cn0+Cn2+Cn4+……+Cnn=2^(n-1)(n为偶数)(2)Cn1 2020-07-31 …
已知数列{An}满足递推关系式:A(n+1)=1/2An^2-An+2,n>=1,n为整数.(1) 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
1+2+3+4+5+.+n=0.5n^2+n1^2+2^2+3^2.+n^2=n(n+1)(2n+ 2020-08-03 …
关于排列:有1个1,2个2...n个n,从中取出n个数组成数列,共有多少种方法现有1个1,2个2,3 2020-11-18 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …