早教吧作业答案频道 -->数学-->
问一条关于高一任意三角角函数的题目已知xsinθ-ycosθ=根号(x^2+y^2)且(sin^2θ)/a^2+(cos^2θ)/b^2=1/(x^2+y^2)求证x^2/a^2+y^2/b^2=1
题目详情
问一条关于高一任意三角角函数的题目
已知xsinθ-ycosθ=根号(x^2+y^2)
且(sin^2θ)/a^2+(cos^2θ)/b^2=1/(x^2+y^2)
求证x^2/a^2+y^2/b^2=1
已知xsinθ-ycosθ=根号(x^2+y^2)
且(sin^2θ)/a^2+(cos^2θ)/b^2=1/(x^2+y^2)
求证x^2/a^2+y^2/b^2=1
▼优质解答
答案和解析
因为xsinθ-ycosθ=根号(x^2+y^2),两边平方得x^2(sinθ)^2+y^2(cosθ)^2-2xysinθcosθ=x^2+y^2
左边往右边移项得x^2[1-(sinθ)^2]+y^2[1-(cosθ)^2]^2+2xysinθcosθ=0
x^2(cosθ)^2+y^2(sinθ)^2+2xysinθcosθ=0 配方得(xcosθ+ysinθ)^2=0
所以(xcosθ+ysinθ)=0,所以xcosθ= - ysinθ
因为(sin^2θ)/a^2+(cos^2θ)/b^2=1/(x^2+y^2)所以把(x^2+y^2)去分母到左边,并把左边分离成4个部分得:(x^2+y^2)(sinθ)^2/a^2 + (x^2+y^2)(cosθ)^2/b^2=1
x^2(sinθ)^2/a^2 + y^2(sinθ)^2/a^2 + x^2(cosθ)^2/b^2 +y^2(cosθ)^2/b^2 =1
把第二式中的y^2(sinθ)^2换成x^2(cosθ)^2、第三式中x^2(cosθ)^2换成y^2(sinθ)^2,这样就得x^2/a^2+y^2/b^2=1成立了
左边往右边移项得x^2[1-(sinθ)^2]+y^2[1-(cosθ)^2]^2+2xysinθcosθ=0
x^2(cosθ)^2+y^2(sinθ)^2+2xysinθcosθ=0 配方得(xcosθ+ysinθ)^2=0
所以(xcosθ+ysinθ)=0,所以xcosθ= - ysinθ
因为(sin^2θ)/a^2+(cos^2θ)/b^2=1/(x^2+y^2)所以把(x^2+y^2)去分母到左边,并把左边分离成4个部分得:(x^2+y^2)(sinθ)^2/a^2 + (x^2+y^2)(cosθ)^2/b^2=1
x^2(sinθ)^2/a^2 + y^2(sinθ)^2/a^2 + x^2(cosθ)^2/b^2 +y^2(cosθ)^2/b^2 =1
把第二式中的y^2(sinθ)^2换成x^2(cosθ)^2、第三式中x^2(cosθ)^2换成y^2(sinθ)^2,这样就得x^2/a^2+y^2/b^2=1成立了
看了 问一条关于高一任意三角角函数...的网友还看了以下:
设随机变量X与Y相互独立,X的概率分布为P{X=i}=1/3(i=—1,0,1),Y的概率密度为f 2020-05-15 …
1.y=√x-8+√8-x+5则x·y=2.若实数x,y满足y=(√x^2-4+√4-x^2+1) 2020-05-20 …
线y=-1/2x+2交y轴于A点且与直线y=x交于B点.在x轴上存在一动点Q(t,0),过Q点作x 2020-05-22 …
直线l1:x-2y+1=0关于直线l2:y-x=1的对称的直线l3方程本题答案为y-2x-2=0, 2020-06-27 …
1.已知y根号(x-3)/y=-根号(x-3)乘以y,化简根号(x的平方-8x+16)+根号(y- 2020-07-04 …
如图,过y轴上一点A(0,1)作AC平行于x轴,交抛物线如图,过y轴上一点A(0,1)作AC平行X 2020-07-29 …
下列选项中的M和P表示同一集合的是()A.M=(x属于R丨x²+0.01=0),P=(x丨x²=0 2020-07-30 …
关于高一函数图像折叠问题以y=x为例子y=-x就是将直线关于y对称;y=|x|是将x轴向下的部分对 2020-08-01 …
基本不等式已知实数x>2/3,则x-6/(2-3x)的最小值?已知x,y属于正实数.x+y≤1,则 2020-08-03 …
已知正数x,y满足x+2y=1,求1/x+1/y的最小值有如下解法:因为x+2y=1且x>0,y>0 2020-12-31 …