早教吧 育儿知识 作业答案 考试题库 百科 知识分享

基本不等式已知实数x>2/3,则x-6/(2-3x)的最小值?已知x,y属于正实数.x+y≤1,则1/x+1/y的最小值是?为什么1/x+1/y>=(x+y)/x+(x+y)/y

题目详情
基本不等式
已知实数x>2/3,则x-6/(2-3x)的最小值?
已知x,y属于正实数.x+y≤1,则1/x+1/y的最小值是?
为什么1/x+1/y>=(x+y)/x+(x+y)/y
▼优质解答
答案和解析
1 因为x>2/3所以3x-2>0
x-6/(2-3x)=x+6/(3x-2)=(x-2/3)+2/(x-2/3)
这两个数乘积为定值所以和有最小值为2根号2
当且仅当x=2/3+根号2时取得
2 1/x+1/y>=(x+y)/x+(x+y)/y=2+x/y+y/x
乘积为定值所以和有最小值为4
当且仅当x=y=1/2时取得
注意在使用基本不等式的时候求和的最小值应该让乘积为定值.同样求积的最大值让和为定值.