早教吧作业答案频道 -->数学-->
如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
题目详情
如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
▼优质解答
答案和解析
HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.
∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
,
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.
∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
|
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.
看了 如图,△ABC中,AG⊥BC...的网友还看了以下:
关于矩阵,已知A为n阶可逆矩阵(n>=2),交换A的第1.2列得B,A*为A的伴随矩阵,则A.交换 2020-04-13 …
下列有关实验操作或现象的描述,正确的是()A.探究温度对酶活性的影响,可选择过氧化氢溶液作底物B. 2020-05-13 …
下列写法正确的是()A.直线A,B相交于点MB.过A,B,C三点画直线lC.直线a,b相交于点MD 2020-05-13 …
设全集U={a,b,c,d,e,f,g,h}A,B是它的子集A交B=b,CuA交CuB=df,Cu 2020-06-23 …
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则 2020-07-22 …
集合A(-1,1),集合B(b-a,a+b),a=1是A交B的充分条件,求b的范围求高手们快帮帮小 2020-08-02 …
高中数学问题A∩B=B∩A是集合A交集合B等于集合B交集合A的意思吗,还有别的意思吗A∪B=B∪A 2020-08-02 …
什么叫异面直线相交两条异面直线所成的角的定义:直线a,b是异面直线,经过空间一点O,分别引直线A/ 2020-08-02 …
下列写法正确的是()A.直线A,B相交于点MB.过A,B,C三点画直线lC.直线a,b相交于点MD. 2021-01-05 …
下列写法正确的是()A.直线A,B相交于点MB.过A,B,C三点画直线lC.直线a,b相交于点MD. 2021-01-05 …