早教吧作业答案频道 -->数学-->
如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠ACB的平分线于点E,如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN//BC,设MN交∠ACB的平分线于点E,交△ABC的外
题目详情
如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠ACB的平分线于点E,
如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN//BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F (1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN//BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F (1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
▼优质解答
答案和解析
1 证明:∵MN//BC
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 当O在AC上运动时,BCFE不是菱形.
3 当 △ABC是等腰直角三角形时,并且O运动到AC边中点时,四边形AECF是正方形.
证明:∵∠C=90°CE是角分线
∴∠ACE=45°
:∵OE//BC
∴∠FEC=45°
∴OE=OC
∵OC=OA(已知)
∴OC=OA=OE=OF
∵AC⊥EF
∴AECF是正方形.
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 当O在AC上运动时,BCFE不是菱形.
3 当 △ABC是等腰直角三角形时,并且O运动到AC边中点时,四边形AECF是正方形.
证明:∵∠C=90°CE是角分线
∴∠ACE=45°
:∵OE//BC
∴∠FEC=45°
∴OE=OC
∵OC=OA(已知)
∴OC=OA=OE=OF
∵AC⊥EF
∴AECF是正方形.
看了 如图,在三角形ABC中,点O...的网友还看了以下:
已知A与(B或C)=D,能否得出结论:Aand非(B与C)=非D?已知定理:A与(B或C)=D如: 2020-04-06 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
如果括号前面是加号,加上括号后,括号里面各项不变号如果括号前面是减号,加上括号后,括号里面各项要变 2020-04-25 …
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
证明;(a+b)/(a-b)+(b+c)/(b-c)+(c+a)/(c-a)+[(a+b)(b+c 2020-05-21 …
一、x=(b^2+c^2-a^2)/2bc,y=(c^2+a^2-b^2)/2ac,z=(a^2+ 2020-06-11 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
已知a+b+c=0,求证a³+b³+c³=3abc过程解释已知a+b+c=0,求证a³+b³+c³ 2020-06-12 …
证明(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C),A∩(B∪C)=(A∩B)∪( 2020-06-14 …