早教吧 育儿知识 作业答案 考试题库 百科 知识分享

帮忙解两道对数的题1.设f(x)=lg(ax²+ax+a+1)若f(x)的值域为R,求实数a的取值范围2.函数f(x)=a的x方+loga(x+1)在[0,1]上的最大值与最小值之和为a;求a谢谢越详细越好~~

题目详情
帮忙解两道对数的题
1.设f(x)=lg(ax²+ax+a+1) 若f(x)的值域为R,求实数a的取值范围
2.函数f(x)=a的x方+loga(x+1)在[0,1]上的最大值与最小值之和为a;求a
谢谢 越详细越好~~
▼优质解答
答案和解析
1.∵ f(x)的值域为R
∴ ax²+ax+a+1 > 0恒成立
∴ 当a>0时,则△=a²-4a(a+1)〈 0
即a²-4a²-4a〈 0,解得a〈 -4/3;
当a=0时,1 > 0恒成立;
当a〈 0时,不合题意.
综上所述,实数a的取值范围为(-∽,-4/3)U{0}.
2.∵ 当a>1时,函数y=a^x在[0,1]上单调递增;
且函数y=loga(x+1)也在[0,1]上单调递增.
∴ 当a>1时,函数f(x)=a^x+loga(x+1)在[0,1]上单调递增
即 函数f(x)在[0,1]上的最小值为f(0),最大值为f(1)
∴ f(0)+f(1)=a
∴ [ a^0 + loga(0+1) ] + [ a^1 + loga(1+1) ] = a
∴ 1+0+a+loga2=a
∴ loga2=-1,解得a = 1/2〈 1(不合题意,舍)
又∵ 当0〈a〈1时,函数y=a^x在[0,1]上单调递减;
且函数y=loga(x+1)也在[0,1]上单调递减.
∴ 当a>1时,函数f(x)=a^x+loga(x+1)在[0,1]上单调递减
即 函数f(x)在[0,1]上的最小值为f(1),最大值为f(0)
∴ f(0)+f(1)=a
∴ [ a^0 + loga(0+1) ] + [ a^1 + loga(1+1) ] = a
∴ 1+0+a+loga2=a
∴ loga2=-1,解得a = 1/2
综上所述,实数a = 1/2.
PS.我也不是太确定啊…因为今天做得不太顺手…你自己再做一遍检查下吧…
嗯…还有我想请教一下…你那个…x² …这个小平方…是怎么打出来的呢…