早教吧作业答案频道 -->英语-->
一篇英语eassy..我没想法.."Describehowfurtheringyoureducationbeyondhighschoolwillhelpmakeyourdreamscometrue."这是题目..我们要求250字..提供详细想法就好~~这个很重要的~~
题目详情
一篇英语eassy..我没想法..
"Describe how furthering your education beyond high school will help make your dreams come true."
这是题目..我们要求250字..
提供详细想法就好~~这个很重要的~~
"Describe how furthering your education beyond high school will help make your dreams come true."
这是题目..我们要求250字..
提供详细想法就好~~这个很重要的~~
▼优质解答
答案和解析
Brainstorm:
Backgroud:first you can talk about “the backgroud of furthering education beyond school in the worldthe",then comes to "" then the furthering education can help the dream come ture" .Finally,the thesis statement about your topic "X and X are two ways the furthering education help to realise the dream.(30-50words)
Body:
Idea one :Furthering education beyond high school can increase your knowledge on the professional academic subjects.(then give reasons and examples:eg.the college education can help a people who are interested in electric circuit become an electronics engineer...) (60-80words)
Idea two:Furthering education beyond high school can broaden the horizond and inrease confidence.(reasons and examples:eg.Furthering education beyond high school help people know world and self deeper and build up the confidence to deal with difficulties.) (60-80words)
Conclusion:collect the above ideas and give some recommendations (30-50words)
我这个是按照academic essay的写法,不知道符不符合你的要求呀
稍稍翻译解释一下:
题目是:高中之后的教育将怎样帮助你实现梦想.
首先先写Introduction,introduction中一般需要包括backgroud(写梦想与高中之后的教育的关系吧),而且要从wide到narrow,最后一定要写中心句(thesis statement):告诉读者高中之后的教育是通过以下两个方面帮助梦想实现.250字的小essay,introduction写3-4句话就可以了.
然后是文章:
我觉得可以从两个方面写:
方面一:高中之后的教育可以加强学术与专业方面的知识,从而帮助梦想实现
例子:高中之后的教育可以使一个对电路很有兴趣的人成为一个电子工程师;
方面二:高中之后的教育可以拓宽眼界并增强信心
例子:高中后的深造可以使人们对世界与自己有更多的了解,并增强了应对事物的能力与自信.(小essay中可以用reason代替exmaples)
最后作conclusion,将所列数的ideas概括一遍并加些recommendations(对高中之后的教育的建议).(recommendation 一两点就可以)
终于打完啦~(建议你不要只看我写的中文呀,其实英文概括得更好的^ ^)
Backgroud:first you can talk about “the backgroud of furthering education beyond school in the worldthe",then comes to "" then the furthering education can help the dream come ture" .Finally,the thesis statement about your topic "X and X are two ways the furthering education help to realise the dream.(30-50words)
Body:
Idea one :Furthering education beyond high school can increase your knowledge on the professional academic subjects.(then give reasons and examples:eg.the college education can help a people who are interested in electric circuit become an electronics engineer...) (60-80words)
Idea two:Furthering education beyond high school can broaden the horizond and inrease confidence.(reasons and examples:eg.Furthering education beyond high school help people know world and self deeper and build up the confidence to deal with difficulties.) (60-80words)
Conclusion:collect the above ideas and give some recommendations (30-50words)
我这个是按照academic essay的写法,不知道符不符合你的要求呀
稍稍翻译解释一下:
题目是:高中之后的教育将怎样帮助你实现梦想.
首先先写Introduction,introduction中一般需要包括backgroud(写梦想与高中之后的教育的关系吧),而且要从wide到narrow,最后一定要写中心句(thesis statement):告诉读者高中之后的教育是通过以下两个方面帮助梦想实现.250字的小essay,introduction写3-4句话就可以了.
然后是文章:
我觉得可以从两个方面写:
方面一:高中之后的教育可以加强学术与专业方面的知识,从而帮助梦想实现
例子:高中之后的教育可以使一个对电路很有兴趣的人成为一个电子工程师;
方面二:高中之后的教育可以拓宽眼界并增强信心
例子:高中后的深造可以使人们对世界与自己有更多的了解,并增强了应对事物的能力与自信.(小essay中可以用reason代替exmaples)
最后作conclusion,将所列数的ideas概括一遍并加些recommendations(对高中之后的教育的建议).(recommendation 一两点就可以)
终于打完啦~(建议你不要只看我写的中文呀,其实英文概括得更好的^ ^)
看了 一篇英语eassy..我没想...的网友还看了以下:
概率论中二维随机变量求边缘密度的两种方法的问题……看这个题目:二维随机变量的联合分布函数满足:F( 2020-05-17 …
求方程xdy+dx=e^ydx的通解移位:dy/(1-e^y)+dx/x=0∫(1+(e^y/(1 2020-06-12 …
一个概率的问题已知二维随机变量(X,Y)服从正态分布,且E(X)=E(Y)=0,D(X)=16,D 2020-06-13 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
,Var(X+Y)=Var(X)+Var(Y)设随机变量X,Y的数学期望和方差都存在,则下式中一定 2020-07-19 …
y=a^x对x求导,下面有两种求法,1、y=a^x=(e^lna)^x=e^(xlna)所以:y‘ 2020-07-20 …
隐函数求道的方法为什么e^y+xy-e=0怎么导出d/dx(e^y+xy-e)=e^ydy/dx+ 2020-07-22 …
大学概率论问题,下面这个公式是怎么推导出来的?当X,Y相互独立时,E[(X-E(X))(Y-E(Y 2020-07-25 …
设集合P={y|y=x^2-1},Q={y|y=-2x^2+2}.若E=P∩Q.求.(1)集合E: 2020-08-01 …
证明:设二维随机变量(X,Y)服从二维正态分布N(0,0,1,1,p),则X-Y服从正态分布N(0, 2020-10-31 …