早教吧作业答案频道 -->数学-->
要10道有理数计算题,10道整式简化题,10道一元一次解方程题,10道几何题(用因为、所以做的),30道一元一次方程应用题.能有几道就给几道,
题目详情
▼优质解答
答案和解析
10道有理数计算题:
(1) 9*27
(3) (-2)-8-14-13
(4) (-7)*(-1)/7+8
(5) (-11)*4-(-18)/18
(6) 4+(-11)-1/(-3)
(7) (-17)-6-16/(-18)
(8) 5/7+(-1)-(-8)
(9) (-1)*(-1)+15+1
(10) 3-(-5)*3/(-15)
答:1 243
3 -37
4 9
5 -43
6 -(20/3)
7 -(199/9)
8 54/7
9 17
10 2
10道整式简化题
1、用代数式表示a与-5的差的2倍是( ) A、a-(-5)×2 B、a+(-5)×2 C、2(a-5) D、2(a+5) 2、用字母表示有理数的减法法则是( ) A、a-b=a+b B、a-b=a+(-b) C、a-b=-a+b D、a-b=a-(-b) 3、某班共有学生x人,其中女生人数占35%,那么男生人数是( ) A、35%x B、(1-35%)x C、 35%x D、135% x 4、若代数式473bax 与代数式 y ba24 是同类项,则 yx 的值是( ) A、9 B、9 C、4 D、4 5、把-x-x合并同类项得( ) A、0 B、-2 C、-2x D、-2x2 6、一个两位数,十位上的数字是x,个位上的数字是y,如果把十位上的数与个位上的数对调,所得的两位数是( ) A、yx B、y+x C、10y+x D、10x+y 7、如果代数式4252 y y的值为7,那么代数式212yy的值等于( ) A、2 B、3 C、2 D、4 8、下面的式子,正确的是( ) A、3a2+5a2=8a4 B、5a2b-6ab2=-ab2 C、6xy-9yx=-3xy D、2x+3y=5xy 9、一个多项式加上x2y-3xy2得2x2y-xy2 ,则这个多项式是( ) A、3x2y-4xy2; B、x2y-4xy2; C、x2y+2xy2; D、-x2y-2xy2 10、若A=x2-5x+2,B=x2 -5x-6,则A与B的大小关系是( ) (A)A>B (B)A=B (C)A 答案: 一、1、D 2、B 3、B 4、A 5、C 6、C 7、A 8、C 9、C 10、A
10道一元一次解方程题
(1) 3X-(1/2+1/4)=7/12
3X=7/12+3/4
3X=4/3
X=4/9
(2) 6.6-5X=3/4-4X
6.6-0.75=-4X+5X
X=5.85
(3) 1.1X+2.2=5.5-3.3X
1.1X+3.3X=5.5-2.2
4.4X=3.3
X=3/4=4/3
(4)3x-3=1
x=4/3
(5)5x-3x=4
x=2
(6)3x+7=28
x=7
(7)3x-7=26
x=11
(8)9x-x=16
x=2
(9)24x+x=50
x=2
(10)3x-8=30
x=38/3
10道几何题
1.如图4.已知:在△ABC中,AD是∠BAC的平分线,过D作BA的平行线交AC于F,已知AB=15cm,AC=10cm,求DF、FC的长.
2.如图5.已知:梯形ABCD中,AD‖BC,E是AB上一点,EF‖BC交CD于F,若AE:EB=2:3,AD=10,BC=15.求EF的长.
3.如图6.已知:△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD(本题9分)
4.如图7.已知:△ABC中,∠BAC=90°,AF⊥BC于F,分别以AB、AC为边向外作等边三角形ABD、ACE.求证:△BDF∽△AEF.(本题9分)
5.如图8.已知:在Rt△ABC中,∠ACB=90°,M是AB中点,过M作AB的垂线交AC于D,交BC延长线于E.
求证:AC:BC=ME:CM.(本题7分)
6.(此题一、二班必作,其他班选做)(一、二班20、21、22每题6分,23、24每题7分)如图9.已知:△ABC中,AB=3AC,AD是∠BAC的平分线,BE⊥AD交AD延长线于E点.求证:AD=DE
7.如图10.已知:△ABC中,AB=AC=5,BC=6,动点D在边AB上,DE⊥AB,点E在边BC上,又点F在边AC上,且∠DEF=∠B.(1)求证:△FCE∽△EBD;(2)当点D在边AB上运动时,是否可能使 ?如果可能,求出BD的长;如果不可能,请说明理由.(本题7分)
答案
1.简证出AF=DF得(3分) 出 得(3分)
代值解得DF=6cm,CF=4cm.得(3分)
2.解 辅助线(2分) CG=FH=AD=10,BG=5,(2分);‖得 ,由已知得 ,代值得EH=2,EF=12.(5分)
3.证明:∵∠ABC=2∠C;BD平分∠ABC. ∴∠ABD=∠DBC=∠C. ∴BD=CD ∠A=∠A ∴△ABC∽△ABD ∴ ∴AB•BC=AC•CD
4.证明:∵∠BAC=90°AF⊥BC,∠ABF=∠FAC ∴△ABF∽△CAF. ∴ 又AB=BD,AC=AE. ∴ ∵∠ABD=∠EAF=60°∴∠ABD+∠ABF=∠EAC+∠FAC即∠DBF=∠EAF ∴△BDF∽△AEF
5.证明:△ABC和△BME中,∠B=∠B,∠BME=∠ACB=90°. ∴△ABC∽△BME. ∴AC:BC=ME:MB,Rt△ABC中,又M为AB中点. ∴ . ∴AC:BC=ME:MC.
6.证明:延长AC、BE交于P,经E作EG‖BC交CP于G.∵∠BAE=∠PAE,BE⊥AE. ∠BEA=∠PEA=90°. AE=AE. ∴△ABE≌△APE,AB=AP,BE=EP. ∵GE‖BC,∴CG=GP, . ∴ . EG‖BC,EG‖DC,∴△ADC∽△AEG. ∴ ,∴AD=DE.
7.(1)证明:∠DEC=∠B+∠BDE=∠DEF+∠FEC. ∠BDE=90°,∠B=∠DEF.∴∠FEC=∠BDE=90°,∵AB=AC. ∴∠B=∠C,△FCE∽△EBD.
(2)△FCE中斜边最大时,CF=CA,即F重合于A,这时E为BC中点,BE=3,CF=5. ∵△FCE∽△EBD. ∴ . ∴不可能使
30道一元一次方程应用题
一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y+3
3y-y=3+4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x+2
0.4x+0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
5x+15-2x-2=10,3x=-3,x=-1;
④解方程
2x-4+5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y+6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x+ =6x+
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x+2)-1;
(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);
(3) [ ( )-4 ]=x+2;
(4)
(5)
(6)
(7)
(8)20%+(1-20%)(320-x)=320×40%
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
② .
第四章 一元一次方程的应用(习题课)
一、目的要求
1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力.
2.通过练习使学生进一步领会采用代数方法解应用题的优越性.
二、内容分析
到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:
1.和倍、差倍问题;
2.形积变化问题;
3.相遇问题;
4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及.当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事).
通过这四类应用题,学生学习了列出一元一次方程应用题的方法(含五个步骤),了解了代数方法与算术方法的差别,并初步体会到代数方法由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子).
本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸.
三、教学过程
复习提问:
1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?
2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么.)
3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位.)
引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识.
课堂练习:
1.某农具厂计划在6天内生产某种新式农具144件,第一天已生产了19件,后5天平均每天应当生产多少件?
提示:设后5天平均每天应当生产x件,根据题意,得
5x+19=144.
解得经x=25.
2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?
提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得
x-25%?x=600.
解得x=800.
3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满.这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14.)
提示:设长方体容器的高为xcm,根据题意,得
,
3.14×720=100x.
解得 x=22.608.
4.请同学们根据一元一次方程
编一道应用题.
提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”.然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%.张小红到前年年底在储蓄多少元?
课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍.
四、课外作业
教科书第242页复习题四A组的第5,6题.
补充题:
1.两数的和为27.14,差为2.22,求这两个数.(答案:14.68与12.46.)
提示:设小数为x,则大数为x+2.22.
2.两个正数的比为5:3,差为6,求这两个数.(答案:15与9.)
3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%.革新前每件产品的成本是多少元?(答案:44元)
4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满.已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1.)
望采纳谢谢
(1) 9*27
(3) (-2)-8-14-13
(4) (-7)*(-1)/7+8
(5) (-11)*4-(-18)/18
(6) 4+(-11)-1/(-3)
(7) (-17)-6-16/(-18)
(8) 5/7+(-1)-(-8)
(9) (-1)*(-1)+15+1
(10) 3-(-5)*3/(-15)
答:1 243
3 -37
4 9
5 -43
6 -(20/3)
7 -(199/9)
8 54/7
9 17
10 2
10道整式简化题
1、用代数式表示a与-5的差的2倍是( ) A、a-(-5)×2 B、a+(-5)×2 C、2(a-5) D、2(a+5) 2、用字母表示有理数的减法法则是( ) A、a-b=a+b B、a-b=a+(-b) C、a-b=-a+b D、a-b=a-(-b) 3、某班共有学生x人,其中女生人数占35%,那么男生人数是( ) A、35%x B、(1-35%)x C、 35%x D、135% x 4、若代数式473bax 与代数式 y ba24 是同类项,则 yx 的值是( ) A、9 B、9 C、4 D、4 5、把-x-x合并同类项得( ) A、0 B、-2 C、-2x D、-2x2 6、一个两位数,十位上的数字是x,个位上的数字是y,如果把十位上的数与个位上的数对调,所得的两位数是( ) A、yx B、y+x C、10y+x D、10x+y 7、如果代数式4252 y y的值为7,那么代数式212yy的值等于( ) A、2 B、3 C、2 D、4 8、下面的式子,正确的是( ) A、3a2+5a2=8a4 B、5a2b-6ab2=-ab2 C、6xy-9yx=-3xy D、2x+3y=5xy 9、一个多项式加上x2y-3xy2得2x2y-xy2 ,则这个多项式是( ) A、3x2y-4xy2; B、x2y-4xy2; C、x2y+2xy2; D、-x2y-2xy2 10、若A=x2-5x+2,B=x2 -5x-6,则A与B的大小关系是( ) (A)A>B (B)A=B (C)A 答案: 一、1、D 2、B 3、B 4、A 5、C 6、C 7、A 8、C 9、C 10、A
10道一元一次解方程题
(1) 3X-(1/2+1/4)=7/12
3X=7/12+3/4
3X=4/3
X=4/9
(2) 6.6-5X=3/4-4X
6.6-0.75=-4X+5X
X=5.85
(3) 1.1X+2.2=5.5-3.3X
1.1X+3.3X=5.5-2.2
4.4X=3.3
X=3/4=4/3
(4)3x-3=1
x=4/3
(5)5x-3x=4
x=2
(6)3x+7=28
x=7
(7)3x-7=26
x=11
(8)9x-x=16
x=2
(9)24x+x=50
x=2
(10)3x-8=30
x=38/3
10道几何题
1.如图4.已知:在△ABC中,AD是∠BAC的平分线,过D作BA的平行线交AC于F,已知AB=15cm,AC=10cm,求DF、FC的长.
2.如图5.已知:梯形ABCD中,AD‖BC,E是AB上一点,EF‖BC交CD于F,若AE:EB=2:3,AD=10,BC=15.求EF的长.
3.如图6.已知:△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD(本题9分)
4.如图7.已知:△ABC中,∠BAC=90°,AF⊥BC于F,分别以AB、AC为边向外作等边三角形ABD、ACE.求证:△BDF∽△AEF.(本题9分)
5.如图8.已知:在Rt△ABC中,∠ACB=90°,M是AB中点,过M作AB的垂线交AC于D,交BC延长线于E.
求证:AC:BC=ME:CM.(本题7分)
6.(此题一、二班必作,其他班选做)(一、二班20、21、22每题6分,23、24每题7分)如图9.已知:△ABC中,AB=3AC,AD是∠BAC的平分线,BE⊥AD交AD延长线于E点.求证:AD=DE
7.如图10.已知:△ABC中,AB=AC=5,BC=6,动点D在边AB上,DE⊥AB,点E在边BC上,又点F在边AC上,且∠DEF=∠B.(1)求证:△FCE∽△EBD;(2)当点D在边AB上运动时,是否可能使 ?如果可能,求出BD的长;如果不可能,请说明理由.(本题7分)
答案
1.简证出AF=DF得(3分) 出 得(3分)
代值解得DF=6cm,CF=4cm.得(3分)
2.解 辅助线(2分) CG=FH=AD=10,BG=5,(2分);‖得 ,由已知得 ,代值得EH=2,EF=12.(5分)
3.证明:∵∠ABC=2∠C;BD平分∠ABC. ∴∠ABD=∠DBC=∠C. ∴BD=CD ∠A=∠A ∴△ABC∽△ABD ∴ ∴AB•BC=AC•CD
4.证明:∵∠BAC=90°AF⊥BC,∠ABF=∠FAC ∴△ABF∽△CAF. ∴ 又AB=BD,AC=AE. ∴ ∵∠ABD=∠EAF=60°∴∠ABD+∠ABF=∠EAC+∠FAC即∠DBF=∠EAF ∴△BDF∽△AEF
5.证明:△ABC和△BME中,∠B=∠B,∠BME=∠ACB=90°. ∴△ABC∽△BME. ∴AC:BC=ME:MB,Rt△ABC中,又M为AB中点. ∴ . ∴AC:BC=ME:MC.
6.证明:延长AC、BE交于P,经E作EG‖BC交CP于G.∵∠BAE=∠PAE,BE⊥AE. ∠BEA=∠PEA=90°. AE=AE. ∴△ABE≌△APE,AB=AP,BE=EP. ∵GE‖BC,∴CG=GP, . ∴ . EG‖BC,EG‖DC,∴△ADC∽△AEG. ∴ ,∴AD=DE.
7.(1)证明:∠DEC=∠B+∠BDE=∠DEF+∠FEC. ∠BDE=90°,∠B=∠DEF.∴∠FEC=∠BDE=90°,∵AB=AC. ∴∠B=∠C,△FCE∽△EBD.
(2)△FCE中斜边最大时,CF=CA,即F重合于A,这时E为BC中点,BE=3,CF=5. ∵△FCE∽△EBD. ∴ . ∴不可能使
30道一元一次方程应用题
一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y+3
3y-y=3+4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x+2
0.4x+0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
5x+15-2x-2=10,3x=-3,x=-1;
④解方程
2x-4+5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y+6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x+ =6x+
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x+2)-1;
(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);
(3) [ ( )-4 ]=x+2;
(4)
(5)
(6)
(7)
(8)20%+(1-20%)(320-x)=320×40%
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
② .
第四章 一元一次方程的应用(习题课)
一、目的要求
1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力.
2.通过练习使学生进一步领会采用代数方法解应用题的优越性.
二、内容分析
到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:
1.和倍、差倍问题;
2.形积变化问题;
3.相遇问题;
4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及.当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事).
通过这四类应用题,学生学习了列出一元一次方程应用题的方法(含五个步骤),了解了代数方法与算术方法的差别,并初步体会到代数方法由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子).
本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸.
三、教学过程
复习提问:
1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?
2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么.)
3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位.)
引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识.
课堂练习:
1.某农具厂计划在6天内生产某种新式农具144件,第一天已生产了19件,后5天平均每天应当生产多少件?
提示:设后5天平均每天应当生产x件,根据题意,得
5x+19=144.
解得经x=25.
2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?
提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得
x-25%?x=600.
解得x=800.
3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满.这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14.)
提示:设长方体容器的高为xcm,根据题意,得
,
3.14×720=100x.
解得 x=22.608.
4.请同学们根据一元一次方程
编一道应用题.
提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”.然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%.张小红到前年年底在储蓄多少元?
课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍.
四、课外作业
教科书第242页复习题四A组的第5,6题.
补充题:
1.两数的和为27.14,差为2.22,求这两个数.(答案:14.68与12.46.)
提示:设小数为x,则大数为x+2.22.
2.两个正数的比为5:3,差为6,求这两个数.(答案:15与9.)
3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%.革新前每件产品的成本是多少元?(答案:44元)
4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满.已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1.)
望采纳谢谢
看了 要10道有理数计算题,10道...的网友还看了以下:
几道三元一次方程题算了几遍都是这个结果没有也无所谓!(1)3X-y+Z=42X+3Y-2Z=123X 2020-03-31 …
要10道有理数计算题,10道整式简化题,10道一元一次解方程题,10道几何题(用因为、所以做的), 2020-04-09 …
matlab 矩阵的每一个元素都等于前几个元素的和 如何实现如题,比如我有一个矩阵A=[2 4 8 2020-05-16 …
解一元一次方程,下面每道题只能用一元一次方程!会几个先回答我几个!明天用!1.已知三角形三边之比为 2020-05-17 …
英语翻译1.据报道2.而不是基于猜测和想像3.我刚看见闪电4.从几美元到几十美元不等5.你才能对他 2020-06-28 …
关于公元纪年的几个问题我有几个关于公元纪年的问题不懂,请哪位明白的给指点一下1.公元前的时间推算是 2020-06-28 …
欧式几何能不能解决所有解析几何能解决的问题?解析几何是不是只是因为走捷径才出名的?它所能解决的问题 2020-06-29 …
摆脱哥哥姐姐帮我1道5年级数学题,贡献所有积分!1.所有商品8折优惠沙发原价5600元,茶几原价5 2020-07-03 …
几个《庄子外物》的问题,我的几个问题仅限于《外物》的第六段,也就是“宋元君与神龟”一段.1.文后说 2020-07-06 …
(1)买一条连衣裙和一件上衣,要用多少元?(2)买一件短裙和一条裤子要用多少元?(3)100元能买 2020-08-01 …