早教吧作业答案频道 -->数学-->
填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b=a+3b2,(1)4(2⊕5)=.(2)方程4⊕x=5的解是.(3)若A=x2+2xy+y2,B=x2-2xy+y2,则
题目详情
填空题:(请将结果直接写在横线上)
定义新运算“⊕”,对于任意有理数a,b有a⊕b=
,
(1)4(2⊕5)=___.
(2)方程4⊕x=5的解是___.
(3)若A=x2+2xy+y2,B=x2-2xy+y2,则(A⊕B)+(B⊕A)=___.填空题:(请将结果直接写在横线上)
定义新运算“⊕”,对于任意有理数a,b有a⊕b=
,
(1)4(2⊕5)=___.
(2)方程4⊕x=5的解是___.
(3)若A=x2+2xy+y2,B=x2-2xy+y2,则(A⊕B)+(B⊕A)=___.
,
(1)4(2⊕5)=___.
(2)方程4⊕x=5的解是___.
(3)若A=x2+2xy+y2,B=x2-2xy+y2,则(A⊕B)+(B⊕A)=___.
a+3b 2 a+3b a+3b 2 2
2222
定义新运算“⊕”,对于任意有理数a,b有a⊕b=
a+3b |
2 |
(1)4(2⊕5)=___.
(2)方程4⊕x=5的解是___.
(3)若A=x2+2xy+y2,B=x2-2xy+y2,则(A⊕B)+(B⊕A)=___.填空题:(请将结果直接写在横线上)
定义新运算“⊕”,对于任意有理数a,b有a⊕b=
a+3b |
2 |
(1)4(2⊕5)=___.
(2)方程4⊕x=5的解是___.
(3)若A=x2+2xy+y2,B=x2-2xy+y2,则(A⊕B)+(B⊕A)=___.
a+3b |
2 |
(1)4(2⊕5)=___.
(2)方程4⊕x=5的解是___.
(3)若A=x2+2xy+y2,B=x2-2xy+y2,则(A⊕B)+(B⊕A)=___.
a+3b |
2 |
2222
▼优质解答
答案和解析
(1)∵2⊕5=
=
,
∴4(2⊕5)=4×
=34.
故答案为34;
(2)4⊕x=
,
解方程
=5,得x=2,
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
=2x2-2xy+2y2,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
2+3×5 2 2+3×5 2+3×5 2+3×52 2 2=
,
∴4(2⊕5)=4×
=34.
故答案为34;
(2)4⊕x=
,
解方程
=5,得x=2,
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
=2x2-2xy+2y2,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
17 2 17 17 172 2 2,
∴4(2⊕5)=4×
=34.
故答案为34;
(2)4⊕x=
,
解方程
=5,得x=2,
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
=2x2-2xy+2y2,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
17 2 17 17 172 2 2=34.
故答案为34;
(2)4⊕x=
,
解方程
=5,得x=2,
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
=2x2-2xy+2y2,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
4+3x 2 4+3x 4+3x 4+3x2 2 2,
解方程
=5,得x=2,
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
=2x2-2xy+2y2,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
4+3x 2 4+3x 4+3x 4+3x2 2 2=5,得x=2,
故答案为x=2;
(3)∵A=x22+2xy+y22,B=x22-2xy+y22,
∴(A⊕B)=
=2x2-2xy+2y2,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
x2+2xy+y2+3(x2-2xy+y2) 2 x2+2xy+y2+3(x2-2xy+y2) x2+2xy+y2+3(x2-2xy+y2) x2+2xy+y2+3(x2-2xy+y2)2+2xy+y2+3(x2-2xy+y2)2+3(x2-2xy+y2)2-2xy+y2)2)2 2 2=2x22-2xy+2y22,
(B⊕A)=
=2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
x2-2xy+y2+3(x2+2xy+y2) 2 x2-2xy+y2+3(x2+2xy+y2) x2-2xy+y2+3(x2+2xy+y2) x2-2xy+y2+3(x2+2xy+y2)2-2xy+y2+3(x2+2xy+y2)2+3(x2+2xy+y2)2+2xy+y2)2)2 2 2=2x22+2xy+2y22,
∴(A⊕B)+(B⊕A)=4x22+4y22.
故答案为4x22+4y22.
2+3×5 |
2 |
17 |
2 |
∴4(2⊕5)=4×
17 |
2 |
故答案为34;
(2)4⊕x=
4+3x |
2 |
解方程
4+3x |
2 |
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
2+3×5 |
2 |
17 |
2 |
∴4(2⊕5)=4×
17 |
2 |
故答案为34;
(2)4⊕x=
4+3x |
2 |
解方程
4+3x |
2 |
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
17 |
2 |
∴4(2⊕5)=4×
17 |
2 |
故答案为34;
(2)4⊕x=
4+3x |
2 |
解方程
4+3x |
2 |
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
17 |
2 |
故答案为34;
(2)4⊕x=
4+3x |
2 |
解方程
4+3x |
2 |
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
4+3x |
2 |
解方程
4+3x |
2 |
故答案为x=2;
(3)∵A=x2+2xy+y2,B=x2-2xy+y2,
∴(A⊕B)=
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
4+3x |
2 |
故答案为x=2;
(3)∵A=x22+2xy+y22,B=x22-2xy+y22,
∴(A⊕B)=
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
x2+2xy+y2+3(x2-2xy+y2) |
2 |
(B⊕A)=
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案为4x2+4y2.
x2-2xy+y2+3(x2+2xy+y2) |
2 |
∴(A⊕B)+(B⊕A)=4x22+4y22.
故答案为4x22+4y22.
看了 填空题:(请将结果直接写在横...的网友还看了以下:
用你所学的物理知识说明在校运动会4×100m接力赛中,交接棒时两运动员怎样做才能顺利交接接力棒? 2020-05-17 …
用你所学的物理知识说明在校运动会4×100m接力赛中,交接棒时两运动员怎样做才能顺利交接接力棒? 2020-05-17 …
在第29届北京奥运会田径比赛中,美国队先后在男、女4×100米接力首轮比赛中出现掉棒的重大失误,夺 2020-05-17 …
在奥运会“4×100m”接力赛时,在接棒区交接棒的两位运动员的速度大小和方向必须,此时这两位运动员 2020-05-17 …
体育比赛中有很多物理知识,请回答下列问题:(1)在4×100m接力赛中,为保证交接棒顺利进行,交接 2020-05-17 …
1道排列组合的小题(用间接法)从6名运动员选4人参加4*100接力,甲不能跑第一棒,乙不能跑第四棒 2020-05-17 …
匀速直线运动填空题1.在接力赛跑运动中,如果在交接棒过程中交棒与接棒的两位运动员跑的一样快,就能“ 2020-05-20 …
如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运 2020-07-30 …
求解这个数学问题要详细过程某高校要从6名短跑运动员中选出4人参加全省大学生4×100m接力赛求解这个 2020-11-26 …
在4×100m接力赛中,如果有甲乙两运动员在训练交接棒的过程中发现,甲短距离甲乙两运动员在训练交接棒 2020-12-09 …