早教吧作业答案频道 -->数学-->
直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、点F.探究:如果折叠后的△CDF与△BDE均为等腰三角
题目详情
直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、点F.探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.
▼优质解答
答案和解析
∵△CDF中,∠C=90°,且△CDF是等腰三角形,
∴CF=CD,
∴∠CFD=∠CDF=45°,
设∠DAE=x°,由对称性可知,AF=FD,AE=DE,
∴∠FDA=
∠CFD=22.5°,∠DEB=2x°,
分类如下:
①当DE=DB时,∠B=∠DEB=2x°,
由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,
解得:x=22.5°.此时∠B=2x=45°;
见图形(1),说明:图中AD应平分∠CAB.
②当BD=BE时,则∠B=(180°-4x)°,
由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°-4x,
解得x=37.5°,此时∠B=(180-4x)°=30°.
图形(2)说明:∠CAB=60°,∠CAD=22.5°.
③DE=BE时,则∠B=(
)°,
由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+
,
此方程无解.
∴DE=BE不成立.
综上所述∠B=45°或30°.
∴CF=CD,
∴∠CFD=∠CDF=45°,
设∠DAE=x°,由对称性可知,AF=FD,AE=DE,
∴∠FDA=
1 |
2 |
分类如下:
①当DE=DB时,∠B=∠DEB=2x°,
由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,
解得:x=22.5°.此时∠B=2x=45°;
见图形(1),说明:图中AD应平分∠CAB.
②当BD=BE时,则∠B=(180°-4x)°,
由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°-4x,
解得x=37.5°,此时∠B=(180-4x)°=30°.
图形(2)说明:∠CAB=60°,∠CAD=22.5°.
③DE=BE时,则∠B=(
180−2x |
2 |
由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+
180−2x |
2 |
此方程无解.
∴DE=BE不成立.
综上所述∠B=45°或30°.
看了 直角三角形纸片ABC中,∠A...的网友还看了以下:
小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处 2020-04-27 …
( 11 )下列哪一个是上述操作序列完成后栈中的元素列表(从底到顶)A ) F B ) E C ) 2020-05-23 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折 2020-07-04 …
如图,在矩形ABCD中,AB=3,AD=5,点P在线段BC上运动,现将纸片折叠,使点A与点P重合, 2020-07-14 …
如图,已知点E是矩形ABCD的边AB上一点,BE:EA=5:3,EC=155,把△BEC沿折痕EC 2020-07-18 …
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D 2020-07-18 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′(x)lnx>f(x)x 2020-08-02 …
三元一次方程组a*x+b*y+c*z+d=0,e*x+f*y+g*z+h=0,i*x+j*y+k* 2020-08-03 …