早教吧作业答案频道 -->其他-->
(2014•宿迁)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的
题目详情
(2014•宿迁)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
▼优质解答
答案和解析
(1)证明:如图1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为DE的中点,
∴DM=EM.
在△ADM和△NEM中,
∴
.
∴△ADM≌△NEM.
∴AM=MN.
∴M为AN的中点.
(2)证明:如图2,
∵△BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三点在同一直线上,
∴∠ABC=180°-∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
(3)△ACN仍为等腰直角三角形.
证明:如图3,此时A、B、N三点在同一条直线上.
∵AD∥EN,∠DAB=90°,
∴∠ENA=∠DAN=90°.
∵∠BCE=90°,
∴∠CBN+∠CEN=360°-90°-90°=180°.
∵A、B、N三点在同一条直线上,
∴∠ABC+∠CBN=180°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为DE的中点,
∴DM=EM.
在△ADM和△NEM中,
∴
|
∴△ADM≌△NEM.
∴AM=MN.
∴M为AN的中点.
(2)证明:如图2,
∵△BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三点在同一直线上,
∴∠ABC=180°-∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
|
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
(3)△ACN仍为等腰直角三角形.
证明:如图3,此时A、B、N三点在同一条直线上.
∵AD∥EN,∠DAB=90°,
∴∠ENA=∠DAN=90°.
∵∠BCE=90°,
∴∠CBN+∠CEN=360°-90°-90°=180°.
∵A、B、N三点在同一条直线上,
∴∠ABC+∠CBN=180°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
|
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
看了 (2014•宿迁)如图,已知...的网友还看了以下:
已知等差数列{an}中,a1=56,a15=-32,Sn=-5,求n和d. 2020-05-14 …
a1=-4d,an=-4d+(n-1)d=0,得n=5a1=-4.5d,an=-4.5d+(n-1 2020-05-22 …
令N是所有n阶下三角非奇异复方阵的集合,D是主对角线上的元都是非零复数的n阶对角矩阵的集合,说明矩 2020-06-10 …
还有上面的PRN我最开始觉得是排挡杆有9档,后来琢磨了一下觉得不对,然后又看了一下说是手自一体.谁 2020-06-21 …
在等差数列{an}中,a1=5/6,an=-3/2,且前n项和Sn=-5,求数列的公差d5/6+( 2020-07-23 …
已知长方形的四个顶点A(0,0)、B(2,0)、C(2,1)和D(0,1),一质点从AB的中点沿与 2020-07-30 …
点M、N分别是正方体ABCD-A1B1C1D1(图1)的棱A1B1、A1D1的中点,用过A、M、N 2020-07-31 …
MATLAB题目:将最简真分数按照升序排列考虑分数n/d,其中n和d是正整数.如果n 2020-12-05 …
一个有关统计学中t检验的问题请问t检验中的t(nd.f.)中n和d.f.分别表示什么啊 2021-01-05 …
下列说法正确的是?A.如果两个有理数的差是正数,那么这两个有理数都是正数.B.两个数的差一定小于被减 2021-02-02 …