早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•金山区二模)如图,在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,E是在AC边上的一个动点(与点A、C不重合),DF⊥DE,DF与射线BC相交于点F.(1)如图2,如果点D是边AB的中点,求证:D

题目详情
(2010•金山区二模)如图,在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,E是在AC边上的一个动点(与点A、C不重合),DF⊥DE,DF与射线BC相交于点F.
(1)如图2,如果点D是边AB的中点,求证:DE=DF;
(2)如果AD:DB=m,求DE:DF的值;
(3)如果AC=BC=6,AD:DB=1:2,设AE=x,BF=y,
①求y关于x的函数关系式,并写出定义域;
②以CE为直径的圆与直线AB是否可相切?若可能,求出此时x的值;若不可能,请说明理由.
▼优质解答
答案和解析
(1)证明:如图2,连接DC.
∵∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∵点D是AB中点,
∴∠BCD=∠ACD=45°,CD=BD,
∴∠ACD=∠B=45°.
∵ED⊥DF,CD⊥AB,
∴∠EDC+∠CDF=90°,∠CDF+∠FDB=90°,
∴∠EDC=∠FDB,
∴△CED≌△BFD(ASA),
∴DE=DF;

(2)如图1,作DP⊥AC,DQ⊥BC,垂足分别为点Q,P.
∵∠B=∠A,∠APD=∠BQD=90°,
∴△ADP∽△BDQ,
∴DP:DQ=AD:DB=m.
∵∠CPD=∠CQD=90°,∠C=90°,
∴∠QDP=90°,
∵DF⊥DE,∴∠EDF=90°,
∴∠QDF=∠PDE,
∵∠DQF=∠DPE=90°,
∴△DQF∽△DPE,
∴DE:DF=DP:DQ,
∴DE:DF=DP:DQ=AD:DB=m;

(3)①如备用图1,作EG⊥AB,FH⊥AB,垂足分别为点G、H.
在Rt△ABC中,∠C=90°,AC=BC=6,
∴AB=6
2

∵AD:DB=1:2,
∴AD=2
2
,DB=4
2

由∠AGE=∠BHF=90°,∠A=∠B=45°,
可得AG=EG=
2
2
x,BH=FH=
2
2
y,
GD=2
2
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号