早教吧作业答案频道 -->数学-->
操作与探究:如图1,在正方形ABCD中,AB=2,将一块足够大的三角板的直角顶点P放在正方形的中心O处,将三角板绕O点旋转,三角板的两直角边分别交边AB、BC于点E、F.(1)试猜想PE、PF之间
题目详情
▼优质解答
答案和解析
(1)PE=PF.
作PM⊥AB于点M,PN⊥BC于点N.
∵ABCD是正方形,∴BD平分∠ABC.
∴PM=PN.
在四边形BEPF中,
∵∠EBF=∠EPF=90°,
∴∠PFB+∠PEB=180°.
又∵∠PEB+∠PEM=180°,
∴∠PFB=∠PEM.
∴Rt△PEM≌Rt△PFN,(AAS)
∴PE=PF;
(2)由(1)知四边形PEBF的面积等于正方形PMBN的面积.
∵BO=OD,OM ∥ AD,
∴BM=AM=1.
∴S 四边形PEBF =1;
(3)不会改变.理由如下:
作PM⊥AB于点M,PN⊥BC于点N.
∵ABCD是正方形,∴BD平分∠ABC.
∴PM=PN.
在四边形BEPF中,
∵∠EBF=∠EPF=90°,
∴∠PFB+∠PEB=180°.
又∵∠PEB+∠PEM=180°,
∴∠PFB=∠PEM.
∴Rt△PEM≌Rt△PFN,(AAS)
∴PE=PF.
(1)PE=PF.
作PM⊥AB于点M,PN⊥BC于点N.
∵ABCD是正方形,∴BD平分∠ABC.
∴PM=PN.
在四边形BEPF中,
∵∠EBF=∠EPF=90°,
∴∠PFB+∠PEB=180°.
又∵∠PEB+∠PEM=180°,
∴∠PFB=∠PEM.
∴Rt△PEM≌Rt△PFN,(AAS)
∴PE=PF;
(2)由(1)知四边形PEBF的面积等于正方形PMBN的面积.
∵BO=OD,OM ∥ AD,
∴BM=AM=1.
∴S 四边形PEBF =1;
(3)不会改变.理由如下:
作PM⊥AB于点M,PN⊥BC于点N.
∵ABCD是正方形,∴BD平分∠ABC.
∴PM=PN.
在四边形BEPF中,
∵∠EBF=∠EPF=90°,
∴∠PFB+∠PEB=180°.
又∵∠PEB+∠PEM=180°,
∴∠PFB=∠PEM.
∴Rt△PEM≌Rt△PFN,(AAS)
∴PE=PF.
看了 操作与探究:如图1,在正方形...的网友还看了以下:
用一个平面去截正方体,有可能截得的是以下平面图形中的.(写出满足条件的图形序号)(1)正三角形(2 2020-05-14 …
列方程解应用题:(5财富,每道2.5财富)1.已知篮球、足球、排球平均每个36元,篮球比排球每个贵 2020-05-17 …
已知三角形ABC的三边a、b、c满足a^2+/根号(c-1)-2/=10a-2根号(b-5)-25 2020-06-24 …
初一数学1、三角形内角中若最大角是最小角的2倍,那么最小角的度数X的取值范围是()2、用m个正三角 2020-07-30 …
三角形ABC的3个内角角A、角B、角C满足以下条件:3倍的角A大于5倍的角B,2倍的角B大于等于3 2020-07-30 …
从平面外一点向平面引一条垂线和三条斜线,若这些斜线与平面成等角,则如下四个命题中:①三斜足构成正三 2020-07-30 …
在正三角形ABC中,EFP分别是ABACBC边上的点,满足AE:EB=CF:FA=CP:PB=1: 2020-08-02 …
如图在三角形abc中,角abe=2角c,ad是角bac的平分线,be垂直于ad,垂足为e。如图在三角 2020-11-02 …
如图,正三角形ABD和正三角形CBD的边长均为a,先把它们拼合起来,如图,E是AD上交与A,D两点上 2020-11-03 …
1.如图,梯梯形ABCD中,AB‖CD,AD=BC,AC垂直于BD,O是垂足,AB=5,CD=3,( 2020-12-20 …