早教吧作业答案频道 -->数学-->
如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
题目详情
如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点. (1)求证:△MBA≌△NDC; (2)四边形MPNQ是什么样的特殊四边形?请说明理由. |
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
▼优质解答
答案和解析
证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形. 证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形. 证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形. 证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
AB=CD ∠A=∠C=90° AM=CN AB=CD AB=CD AB=CD ∠A=∠C=90° ∠A=∠C=90° ∠A=∠C=90° AM=CN AM=CN AM=CN ,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
DM=BN DQ=BP ∠MDQ=∠NBP DM=BN DM=BN DM=BN DQ=BP DQ=BP DQ=BP ∠MDQ=∠NBP ∠MDQ=∠NBP ∠MDQ=∠NBP ,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形, ∴AB=CD,AD=BC,∠A=∠C=90°, ∵在矩形ABCD中,M、N分别是AD、BC的中点, ∴AM=
∴AM=CN, 在△MAB和△NDC中, ∵
∴△MBA≌△NDC(SAS); (2)四边形MPNQ是菱形. 理由如下:连接AP,MN, 则四边形ABNM是矩形, ∵AN和BM互相平分, 则A,P,N在同一条直线上, 易证:△ABN≌△BAM, ∴AN=BM, ∵△MAB≌△NDC, ∴BM=DN, ∵P、Q分别是BM、DN的中点, ∴PM=NQ, ∵
∴△MQD≌△NPB(SAS). ∴四边形MPNQ是平行四边形, ∵M是AD中点,Q是DN中点, ∴MQ=
∴MQ=
∵MP=
∴MP=MQ, ∴平行四边形MQNP是菱形. |
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
看了 如图,在矩形ABCD中,M、...的网友还看了以下:
已知a,b,c都是整数,m=|a+b|+|b-c|+|a-c|,那么( )A. m一定是奇数B. 2020-05-13 …
求解数学符号变号的应用.x(m-x)(m-y)-m(x-m)(y-m)为什么等于x(m-x)(m- 2020-05-13 …
若非空集合M⊆N={a,b,c,d},则M的个数为8个{a},{b},{c},{d},{a,b}, 2020-05-15 …
4.化简(m-c)/[(m-a)(m-b)]+(b-c)/[(a-b)(m-b)]+(b-c)/[ 2020-05-21 …
换底公式的推算logab=logcb/logca可否这样推出:设logab=x,则a^x=b设lo 2020-06-03 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
关于求映射个数的原理集合M的元素个数m,集合N的元素个数n,那么从M到N的映射个数是n的m次幂.这 2020-06-14 …
已知a,b,c都是整数,m=|a+b|+|b-c|+|a-c|,那么()A.m一定是奇数B.m一定 2020-07-13 …
1.已知三个质数a,b,c满足a+b+c+abc=99,那么("[]'表示绝对值符号)[a-b]+ 2020-08-01 …
关于直线a,b,c以及平面M,N,给出下面命题:①若a∥M,b∥M,则a∥b②若a∥M,b⊥M,则b 2020-11-02 …