早教吧作业答案频道 -->数学-->
数学题已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x).已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x).(1)求函数F(x)的单调区间;(2)若点p为函数的图象上任意一点,当x包含于(0,3]
题目详情
数学题已知函数f (x) = lnx,g (x) =a/x(a>0),设F(x) = f (x) + g (x).
已知函数f (x) = lnx,g (x) =a/x(a>0),设F(x) = f (x) + g (x).(1)求函数F(x)的单调区间;(2)若点p为函数的图象上任意一点,当x包含于(0,3]时,点P处的切线的斜率k≤1/2恒成立,求实数a的最小值;(3)是否存在实数m,使得函数y = g(2a/(1+x2) + m -1的图象与函数y = f (1 + x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.
已知函数f (x) = lnx,g (x) =a/x(a>0),设F(x) = f (x) + g (x).(1)求函数F(x)的单调区间;(2)若点p为函数的图象上任意一点,当x包含于(0,3]时,点P处的切线的斜率k≤1/2恒成立,求实数a的最小值;(3)是否存在实数m,使得函数y = g(2a/(1+x2) + m -1的图象与函数y = f (1 + x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.
▼优质解答
答案和解析
1. F(x)=f(x)+g(x)=lnx +a/x (a>0)
F'(x)=1/x - a/(x^2)=(x-a)/(x^2)
令F'(x)=0 则x=a,故F(x)在(0,a)上递减,在(a,+∞)递增.
2.由题可得F'(x)=1/x - a/(x^2)=k≤1/2 在(0,3]上恒成立,用分离系数法
移项同分之类得 a≥-(x^2)/2 + x=-0.5x(x-2) (因式分解)
由于a≥-(x^2)/2 + x=-0.5x(x-2) 对于x∈(0,3] 恒成立而根据二次函数的特点x=1处取最大值,故由于a≥-(x^2)/2 + x=-0.5x(x-2) 对于x∈(0,3] 恒成立时a≥-0.5*1*(-1)= 0.5
得a的最小值为0.5
3.存在.
y=g[2a/(x^2+1)]+m-1的图像与y=f(1+x^2)的图像恰好有四个不同的交点则
g[2a/(x^2+1)]+m-1=f(1+x^2)有四个不同根
即(x^2+1)/2 + m-1=ln(x^2 +1)有四个不同根 为了方便,这里先换元 令c=x^2 +1≥1
设u(c)=lnc - c/2 (c≥1) 则问题转化为y=u(c)与y=m-1 的图像是否在c>1时有两个不同交点
(这样才能使x有4个根)
求导u'(c)=1/c -1/2 =(2-c)/(2c) 令u'(c)=0则c=1
画图观察则u(c)在(1,2)上递增,在(2,+∞)上递减
u(1)= -1/2 u(2)=ln2 -1
故只要 u(1)<(m-1)<u(2) 也即 -1/2<(m-1)<ln2-1 即 1/2<m<ln2
即可满足y=u(c)与y=m-1 的图像在c>1时有两个不同交点(这样才能使x有4个根)
所以m的取值范围是1/2<m<ln2
F'(x)=1/x - a/(x^2)=(x-a)/(x^2)
令F'(x)=0 则x=a,故F(x)在(0,a)上递减,在(a,+∞)递增.
2.由题可得F'(x)=1/x - a/(x^2)=k≤1/2 在(0,3]上恒成立,用分离系数法
移项同分之类得 a≥-(x^2)/2 + x=-0.5x(x-2) (因式分解)
由于a≥-(x^2)/2 + x=-0.5x(x-2) 对于x∈(0,3] 恒成立而根据二次函数的特点x=1处取最大值,故由于a≥-(x^2)/2 + x=-0.5x(x-2) 对于x∈(0,3] 恒成立时a≥-0.5*1*(-1)= 0.5
得a的最小值为0.5
3.存在.
y=g[2a/(x^2+1)]+m-1的图像与y=f(1+x^2)的图像恰好有四个不同的交点则
g[2a/(x^2+1)]+m-1=f(1+x^2)有四个不同根
即(x^2+1)/2 + m-1=ln(x^2 +1)有四个不同根 为了方便,这里先换元 令c=x^2 +1≥1
设u(c)=lnc - c/2 (c≥1) 则问题转化为y=u(c)与y=m-1 的图像是否在c>1时有两个不同交点
(这样才能使x有4个根)
求导u'(c)=1/c -1/2 =(2-c)/(2c) 令u'(c)=0则c=1
画图观察则u(c)在(1,2)上递增,在(2,+∞)上递减
u(1)= -1/2 u(2)=ln2 -1
故只要 u(1)<(m-1)<u(2) 也即 -1/2<(m-1)<ln2-1 即 1/2<m<ln2
即可满足y=u(c)与y=m-1 的图像在c>1时有两个不同交点(这样才能使x有4个根)
所以m的取值范围是1/2<m<ln2
看了 数学题已知函数f(x)=ln...的网友还看了以下:
高数:若f(x),g(x)在[a,b]区间连续,F(x)=[a,x定积分区间]g(x)d(x)*[ 2020-06-07 …
已知函数f(x)=三分之一的X次方,X属于-1到1闭区间,g(x)=f(x)的平方—2af(x)+ 2020-06-23 …
设f′(x)和g′(x)分别是f(x)和g(x)的导函数,若f′(x)g′(x)≤0在区间I上恒成 2020-06-27 …
设f(x)在(-∞,+∞)内有定义,且limx→∞f(x)=a,g(x)=f(1x),x≠00,x 2020-07-16 …
高等数学:设函数f(x)和g(x)在(-无穷,+无穷)内有定义,f(x)为连续函数,且f(x)≠0 2020-07-21 …
设f(x),g(x)在(-∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x) 2020-07-22 …
高数间断点问题设f(x)在R上连续,且f(x)不等于0,g(x)在R上有定义,且有间断点,则下列陈 2020-07-30 …
设有命题①函数f(x),g(x)在区间I内无界,则f(x)g(x)在I内也无界;②函数f(x),g 2020-07-31 …
一个复合函数间断点的问题.题目就是说设f(x)和g(x)在(-∞,+∞)内有定义,f(x)为连续函 2020-08-02 …
汽车厂修一批汽车,原计划每天修3辆,改进技术后,每天能多修2辆,结果提前4天完成,这批汽车有多少辆我 2020-11-30 …