早教吧作业答案频道 -->数学-->
设函数f(x)二次可微分,且f''(x)>0,f(0)=0证明:函数F(x)=f(x)/x,x≠0,f'(0),x=0是连续的单调增函数.我连续性已证,但单调性证不出来,
题目详情
设函数f(x)二次可微分,且f''(x)>0,f(0)=0
证明:函数F(x)=f(x)/x ,x≠0,f'(0) ,x=0 是连续的单调增函数.
我连续性已证,但单调性证不出来,
证明:函数F(x)=f(x)/x ,x≠0,f'(0) ,x=0 是连续的单调增函数.
我连续性已证,但单调性证不出来,
▼优质解答
答案和解析
对F(x)求导数F'(x)=[xf'(x)-f(x)]/x^2证明F'(x)>0即可分母大于0,只需证分子大于0因为f''(x)>0,说明f'(x)是增函数这样再设x1
看了 设函数f(x)二次可微分,且...的网友还看了以下:
由f'(x)>0,f"(x)>0可知,函数f(x)单调增加,曲线y=f(x)凹向.怎么推断的解释下 2020-05-20 …
设函数f(x)二次可微分,且f''(x)>0,f(0)=0证明:函数F(x)=f(x)/x,x≠0 2020-06-08 …
已知函数f(x)在R上满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(1)= 2020-06-12 …
设函数f(X)在负无穷到正无穷上满足f(2-X)=f(2+x),f(7-x)=f(7+x),且在闭 2020-06-14 …
若曲线y=f(x)(f(x)>0)与以[0,x]为底围成的曲边梯形的面积与纵坐标y的4次幂成正比, 2020-06-14 …
若曲线y=f(x)(f(x)>0)与以[0,x]为底围成的曲边梯形的面积与纵坐标y的4次幂成正比, 2020-06-14 …
函数极限的局部保号性:这个定理是说如果f(x)的极限是A,并且A>0,那么就有邻域内f(x)>0, 2020-06-16 …
对于任意非零实数x,y.已知函数y=f(x)(x不为0)满足f(xy)=f(x)+f(y).第1问 2020-06-27 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …