早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•宜春模拟)设a∈R,函数f(x)=x2e1-x-a(x-1).(Ⅰ)当a=1时,求f(x)在(34,2)内的极大值;(Ⅱ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总

题目详情
(2014•宜春模拟)设a∈R,函数f(x)=x2e1-x-a(x-1).
(Ⅰ)当a=1时,求f(x)在(
3
4
,2)内的极大值;
(Ⅱ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf′(x1),求实数λ的值.(其中f′(x)是f(x)的导函数.)
▼优质解答
答案和解析
(Ⅰ)当a=1时,f(x)=x2e1-x-(x-1),则f'(x)=(2x-x2)e1-x-1=
(2x−x2)−ex−1
ex−1

令h(x)=(2x-x2)-ex-1,则h'(x)=2-2x-ex-1
显然h'(x)在(
3
4
,2)内是减函数,
又因h'(
3
4
)=
1
2
1
4e
<0,故在(
3
4
,2)内,总有h'(x)<0,
∴h(x)在(
3
4
,2)上是减函数,
又因h(1)=0,
∴当x∈(
3
4
,1)时,h(x)>0,从而f'(x)>0,这时f(x)单调递增,
当x∈(1,2)时,h(x)<0,从而f'(x)<0,这时f(x)单调递减,
∴f(x)在(
3
4
,2)的极大值是f(1)=1.                      
(Ⅱ)由题意可知g(x)=(x2-a)e1-x,则g'(x)=(2x-x2+a)e1-x=(-x2+2x+a)e1-x.                   
根据题意,方程-x2+2x+a=0有两个不同的实根x1,x2(x1<x2),
∴△=4+4a>0,即a>-1,且x1+x2=2,∵x1<x2,∴x1<1.
由x2g(x1)≤λf′(x1),其中f'(x)=(2x-x2)e1-x-a,
可得(2-x1)(x12−a)e1−x1≤λ[(2x1−x12)e1−x1−a],
注意到−x12+2x1+a=0,
∴上式化为(2-x1)(2x1e1−x1≤λ[(2x1−x12)e1−x1+(2x1−x12)],
即不等式x1[2e1−x1−λ(e1−x1+1)]≤0对任意的x1∈(-∞,1)恒成立,
(i)当x1=0时,不等式
作业帮用户 2017-10-29