早教吧作业答案频道 -->数学-->
已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=(-1-x)对任意实数都成立,函数y=g(x)与f(X)的图像关于原点对称.f(-1+x)=f(-1-X),f(1)=3(1)求f(x)与g(x)的解析式(2)若f(X)=g(x)-mf(x)在[-1,1]上是增函数,求实数m
题目详情
已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=(-1-x)对任意实数都成立,函数y=g(x)与f(X)的图像关于原点对称.f(-1+x)=f(-1-X),f(1)=3
(1)求f(x)与g(x)的解析式
(2)若f(X)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围
(1)求f(x)与g(x)的解析式
(2)若f(X)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围
▼优质解答
答案和解析
(1)、
因为
f(x-1) = f(-1-x),把这个等式代到f(x)中可以很容易求出
m = 2.
又函数f(x)过(1,3),所以代进f(x)中得:
m + n = 2,
从而
n = 0
故
f(x) = x^2 + 2x.
又g(x)关于f(x)原点对称,所以,根据奇函数的定义:
g(x) = -f(-x) = - x^2 + 2x.
(2)、
F(x) = g(x) - mf(x) = -(m + 1)x^2 - 2(m - 1)x.
F(x)的对称轴是:
x = (1 - m)/(1 + m).
为了让F(x)在〔-1,1〕上为增函数,根据二次函数的定义,必须讨论开口方向来确定,所以有三种情况:
a、m = -1 ,F(x)在[-1,1]为增函数,所以m = -1成立.
b、开口向上,对称轴小于-1,即:
-(m + 1)>0 and (1 - m)/(1 + m)
(1)、
因为
f(x-1) = f(-1-x),把这个等式代到f(x)中可以很容易求出
m = 2.
又函数f(x)过(1,3),所以代进f(x)中得:
m + n = 2,
从而
n = 0
故
f(x) = x^2 + 2x.
又g(x)关于f(x)原点对称,所以,根据奇函数的定义:
g(x) = -f(-x) = - x^2 + 2x.
(2)、
F(x) = g(x) - mf(x) = -(m + 1)x^2 - 2(m - 1)x.
F(x)的对称轴是:
x = (1 - m)/(1 + m).
为了让F(x)在〔-1,1〕上为增函数,根据二次函数的定义,必须讨论开口方向来确定,所以有三种情况:
a、m = -1 ,F(x)在[-1,1]为增函数,所以m = -1成立.
b、开口向上,对称轴小于-1,即:
-(m + 1)>0 and (1 - m)/(1 + m)
看了 已知函数f(x)=x^2+m...的网友还看了以下:
1.设f(x)=ax^2+bx,且-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围2 2020-04-27 …
2^[1+(1/2)^log25]=?我解的是2^[1+(2^log25)^-1]=2^(6/5) 2020-05-13 …
1\x+1=2\x-1解方程过程 2x\2X+5 +5\5X-2=1解方程过程 a的平方\a-b 2020-05-16 …
1.(1)管仲既用,仁政于齐.“用”的意思()(2)功名不显于天下也.“显”的意思()2.解释下列 2020-06-06 …
别解释了我会做只是不想写.11又5/13-(10/17+2又5/13)解方程x-5/6=1/3解方 2020-07-17 …
(1)计算:(a-1)(a+1)=;(a-1)(a^2+a+1)=;(a-1)(a^3+a^2+a 2020-07-18 …
则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾什么意思啊1.设η0是非齐次线性方程组Ax= 2020-07-31 …
x(y+z-x)=39-2(x*x)1.解方程组y(z+x-y)=52-2(y*y)z(x+y-z) 2020-10-30 …
我们用a表示不大于a的最大整数,例如[1·5]=1,[-2.5]-3解决以下问题。l,[丌]=?[- 2020-10-31 …
已知正数x、y满足8/x+1/y=1,则x+2y的最小值是请问此题为什么不可以这样解:(过程如下)1 2020-12-14 …