早教吧作业答案频道 -->其他-->
已知函数f(x)=x2+2ax+1,g(x)=2x+2a(a∈R)(1)若对任意x∈R,不等式f(x)≥12g(x)恒成立,求实数a的取值范围;(2)设函数m(x)=g(x),f(x)≥g(x)f(x),f(x)<g(x),求m(x)在x∈[2,4]上的
题目详情
已知函数f(x)=x2+2ax+1,g(x)=2x+2a(a∈R)
(1)若对任意x∈R,不等式f(x)≥
g(x)恒成立,求实数a的取值范围;
(2)设函数m(x)=
,求m(x)在x∈[2,4]上的最小值.
(1)若对任意x∈R,不等式f(x)≥
1 |
2 |
(2)设函数m(x)=
|
▼优质解答
答案和解析
(1)若不等式f(x)≥
g(x)恒成立,
即x2+(2a-1)x+(1-a)≥0恒成立,
即△=(2a-1)2-4(1-a)≤0,
即4a2-3≤0,
解得a∈[−
,
],
故实数a的取值范围为:[−
,
];
(2)f(x)-g(x)=x2+(2a-2)x+(1-2a)=[x+(2a-1)](x-1),
若2a-1=-1,即a=0时,
f(x)-g(x)=x2+1-2x=(x-1)2≥0恒成立,此时f(x)≥g(x)恒成立,
故此时m(x)=g(x)=2x,
由m(x)在x∈[2,4]上为增函数,故此时m(x)在x∈[2,4]上的最小值为m(2)=4;
若2a-1≠-1,即a≠0时,
f(x)-g(x)有两个零点1-2a,1,
即f(x),g(x)的图象有两个交点,如下图所示:
若1-2a<1,即a>0时,
m(x)在x∈[2,4]上为增函数,故此时m(x)在x∈[2,4]上的最小值为m(2)=g(2)=4+2a;
若1-2a>1,即a<0时,
当-a>4,即a<-4时,m(x)在x∈[2,4]上为减函数,
故此时m(x)在x∈[2,4]上的最小值为m(4)=f(4)=17+8a;
当2≤-a≤4,即-4≤a≤-2时,m(x)在x∈[2,-a]上为减函数,在x∈[-a,4]上为增函数,
故此时m(x)在x∈[2,4]上的最小值为m(-a)=f(-a)=1-a2;
当-a<2<1-2a,即-2<a<-
时,m(x)在x∈[2,4]上为增函数,
故此时m(x)在x∈[2,4]上的最小值为m(2)=f(2)=5+4a;
当2≥1-2a,即-
≤a<0时,m(x)在x∈[2,4]上为增函数,
故此时m(x)在x∈[2,4]上的最小值为m(2)=g(2)=4+2a;
综上所述:m(x)在x∈[2,4]上的最小值为:
1 |
2 |
即x2+(2a-1)x+(1-a)≥0恒成立,
即△=(2a-1)2-4(1-a)≤0,
即4a2-3≤0,
解得a∈[−
| ||
2 |
| ||
2 |
故实数a的取值范围为:[−
| ||
2 |
| ||
2 |
(2)f(x)-g(x)=x2+(2a-2)x+(1-2a)=[x+(2a-1)](x-1),
若2a-1=-1,即a=0时,
f(x)-g(x)=x2+1-2x=(x-1)2≥0恒成立,此时f(x)≥g(x)恒成立,
故此时m(x)=g(x)=2x,
由m(x)在x∈[2,4]上为增函数,故此时m(x)在x∈[2,4]上的最小值为m(2)=4;
若2a-1≠-1,即a≠0时,
f(x)-g(x)有两个零点1-2a,1,
即f(x),g(x)的图象有两个交点,如下图所示:
若1-2a<1,即a>0时,
m(x)在x∈[2,4]上为增函数,故此时m(x)在x∈[2,4]上的最小值为m(2)=g(2)=4+2a;
若1-2a>1,即a<0时,
当-a>4,即a<-4时,m(x)在x∈[2,4]上为减函数,
故此时m(x)在x∈[2,4]上的最小值为m(4)=f(4)=17+8a;
当2≤-a≤4,即-4≤a≤-2时,m(x)在x∈[2,-a]上为减函数,在x∈[-a,4]上为增函数,
故此时m(x)在x∈[2,4]上的最小值为m(-a)=f(-a)=1-a2;
当-a<2<1-2a,即-2<a<-
1 |
2 |
故此时m(x)在x∈[2,4]上的最小值为m(2)=f(2)=5+4a;
当2≥1-2a,即-
1 |
2 |
故此时m(x)在x∈[2,4]上的最小值为m(2)=g(2)=4+2a;
综上所述:m(x)在x∈[2,4]上的最小值为:
|
看了 已知函数f(x)=x2+2a...的网友还看了以下:
急帮我这解这这几道一元二次不等式1.关于X的方程x^2-ax+a^2-1v1=0有个正根一个负根则 2020-04-27 …
高数求平面所围立体体积问题!计算由平面x=0,y=0,z=0及x+y+z=1所围成立体的体积 2020-04-27 …
几道有难度的奥数题1 计算{√[1+2010²+(2010²/2011²)]}-1/20112 已 2020-05-13 …
设对于任意实数x,不等式|x+7|+|x-1|>=m恒成立.(1)求m取值范围.(2)当m取最大. 2020-05-16 …
(本小题满分15分)记函数.(1)若函数在处取得极值,试求的值;(2)若函数有两个极值点,且,试求 2020-07-20 …
已知函数f=大括号{(2x^3)/x+1,x∈(1/2,1],{(-1/3)x+1/6x∈[0,1 2020-07-21 …
函数.(1)若,函数在区间上是单调递增函数,求实数的取值范围;(2)设,若对任意恒成立,求的取值范 2020-07-22 …
已知函数f(x)=xIn(1+x)-a(x+1),其中a为常数[标签:函数,x+1,常数]1)当x 2020-07-23 …
国际视力表值(又叫小数视力值.用V表示,范围是[0.1,1.5])和我国现行视力表值(又叫对数视力 2020-07-24 …
1.若不等式的解集为非空集合,求实数K的取值范围.|ax+1|+|ax-1|<k为什么他的最小值是 2020-08-01 …