早教吧作业答案频道 -->其他-->
已知圆C的方程x2+y2-2x+4y-m=0.(1)若点A(m,-2)在圆C的内部,求m的取值范围;(2)若当m=4时①设P(x,y)为圆C上的一个动点,求(x-4)2+(y-2)2的最值;②问是否存在斜率是1的直线l,使l
题目详情
已知圆C的方程x2+y2-2x+4y-m=0.
(1)若点A(m,-2)在圆C的内部,求m的取值范围;
(2)若当m=4时①设P(x,y)为圆C上的一个动点,求(x-4)2+(y-2)2的最值;②问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.
(1)若点A(m,-2)在圆C的内部,求m的取值范围;
(2)若当m=4时①设P(x,y)为圆C上的一个动点,求(x-4)2+(y-2)2的最值;②问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.
▼优质解答
答案和解析
(1)圆C的方程即(x-1)2+(y+2)2=5+m,∴m>-5.
再根据点A(m,-2)在圆C的内部,可得 (m-1)2+(-2+2)2<5+m,求得-1<m<4.
(2)①当m=4时,圆C的方程即(x-1)2+(y+2)2=5+4=9,而(x-4)2+(y-2)2表示圆C上的点P(x,y)到点H(4,2)的距离的平方,
由于|HC|=
=5,故(x-4)2+(y-2)2的最大值为 (5+3)2=64,(x-4)2+(y-2)2的最小值为 (5-3)2=4.
②假设存在直线l满足题设条件,设l的方程为y=x+m,圆C化为(x-1)2+(y+2)2=9,圆心C(1,-2),
则AB中点N是两直线x-y+m=0与y+2=-(x-1)的交点,即N(−
,
),以AB为直径的圆经过原点,
∴|AN|=|ON|,又CN⊥AB,|CN|=
,∴|AN|=
.
又|ON|=
,由|AN|=|ON|,解得m=-4或m=1.
∴存在直线l,其方程为y=x-4或y=x+1.
再根据点A(m,-2)在圆C的内部,可得 (m-1)2+(-2+2)2<5+m,求得-1<m<4.
(2)①当m=4时,圆C的方程即(x-1)2+(y+2)2=5+4=9,而(x-4)2+(y-2)2表示圆C上的点P(x,y)到点H(4,2)的距离的平方,
由于|HC|=
(4−1)2+(2+2)2 |
②假设存在直线l满足题设条件,设l的方程为y=x+m,圆C化为(x-1)2+(y+2)2=9,圆心C(1,-2),
则AB中点N是两直线x-y+m=0与y+2=-(x-1)的交点,即N(−
m+1 |
2 |
m−1 |
2 |
∴|AN|=|ON|,又CN⊥AB,|CN|=
|1+2+m| | ||
|
9−
|
又|ON|=
(−
|
∴存在直线l,其方程为y=x-4或y=x+1.
看了 已知圆C的方程x2+y2-2...的网友还看了以下:
已知圆C:(x-xo)^2+(y-y0)^2=R^2与y轴相切(急需~)1.求X0与R的关系式2. 2020-05-02 …
已知椭圆C:的离心率为,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.(1)求椭圆C的方 2020-05-15 …
已知A,B是圆O:x^2+y^2=16上的两点,且|AB|=6,若以AB的长为直径的圆M恰好经过点 2020-05-16 …
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l 2020-05-21 …
圆C与y轴相切于点A(0,2)圆心c在直线y=x-1上求圆C标准方程 2020-06-06 …
圆C与y轴相切于点A(0,2),圆心C在直线y=x-1上,求圆C的标准方程. 2020-06-06 …
直线l:(m+1)x+2y-4m-4=0(m∈R)恒过定点C,圆C是以点C为圆心,以4为半径的圆. 2020-07-26 …
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆 2020-07-31 …
已知圆C的方程为(x-m)^2+(y+m-4)^2=2.(1)求圆心C的轨迹方程;已知圆C的方程为 2020-08-02 …
已知动直线l:(m+3)x-(m+2)y+m=0,圆C:(x-3)^2+(y-4)^2=9求证:无论 2021-01-12 …