早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知直线iY=k(X-a)和圆Ox方+Y方=r方(a大于r大于0)直线与圆O相交于电A两点,随着K的变化.弦AB的重点M的轨迹方程是

题目详情
已知直线i Y=k(X-a)和圆O x方+Y方=r方(a大于r大于0)直线与圆O相交于电A 两点,随着K的变化.弦AB的重点M的轨迹方程是
▼优质解答
答案和解析
首先很关键地必须画出坐标轴,作出图形.
直线l:y=k(x-a)及圆O:x^2+y^2=r^2(a>r>0),直线l与圆O相交于A,B两点 .直线方程代入到圆方程中,可以得到关于x的二次三项式(1+k^2)x^2-2ak^2x+a^2k^2-r^2=0
设出A(x1,y1),B(x2,y2),中点M(x,y)
则x1+x2=2ak^2/(1+k^2),
x=(x1+x2)/2=ak^2/(1+k^2),
y=k(x-a)=-ak/(1+k^2).这时可以看出k=-x/y.
下面就是运用圆内的直角三角形OMA(勾股定理)构建等式.弦长AB不难算出
2√(r^2+r^2k^2-a^2k^2).
于是AM=√(r^2+r^2k^2-a^2k^2),
而OM=√(x^2+y^2),OA=r...
这样由勾股定理得到OM^2+AM^2=r^2.
即x^2+y^2+r^2+r^2k^2-a^2k^2=r^2.
再把k=-x/y代入,
则上式只含有未知量x,y (r,a是已知量)
可以得出结果(x^2+y^2)y^2+(r^2-a^2)x^2=0