早教吧作业答案频道 -->数学-->
满足勾股定理的3个整数还满足什么数学规律?我记得初中有做到过题目就是探究就这个,好像这个规律中有加法
题目详情
满足勾股定理的3个整数还满足什么数学规律?
我记得初中有做到过题目就是探究就这个,好像这个规律中有加法
我记得初中有做到过题目就是探究就这个,好像这个规律中有加法
▼优质解答
答案和解析
勾股数
凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数.
①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起九没有间断过.计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式.
②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明.
③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦.
勾股数 - 构成直角三角形的充分且必要条件
设直角三角形三边长为a、b、c,由勾股定理知a2+b2=c2,这是构成直角三角形三边的充分且必要的条件.因此,要求一组勾股数就是要解不定方程x2+y2=z2,求出正整数解.
例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°.此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1.如:6、8、10,8、15、17、10、24、26…等.
再来看下面这些勾股数:3、4、5、5、12、13,7、24、25、9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形.由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证.
勾股数 - 特点
观察分析上述的勾股数,可看出它们具有下列二个特点:
1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数.
2、一个直角三角形的周长等于短直角边的平方与这边的和.
掌握上述二个特点,为解一类题提供了方便.
例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?
用特点1设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182.
用特点2此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182.
凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数.
①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起九没有间断过.计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式.
②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明.
③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦.
勾股数 - 构成直角三角形的充分且必要条件
设直角三角形三边长为a、b、c,由勾股定理知a2+b2=c2,这是构成直角三角形三边的充分且必要的条件.因此,要求一组勾股数就是要解不定方程x2+y2=z2,求出正整数解.
例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°.此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1.如:6、8、10,8、15、17、10、24、26…等.
再来看下面这些勾股数:3、4、5、5、12、13,7、24、25、9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形.由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证.
勾股数 - 特点
观察分析上述的勾股数,可看出它们具有下列二个特点:
1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数.
2、一个直角三角形的周长等于短直角边的平方与这边的和.
掌握上述二个特点,为解一类题提供了方便.
例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?
用特点1设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182.
用特点2此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182.
看了 满足勾股定理的3个整数还满足...的网友还看了以下:
我已经,写了超多了,还有这么多我疯了,怎样写作业,物理11张卷,语文册子还有几页,还有12片日记一 2020-04-11 …
世界上最难的学科一直在思考这个问题,不知道哪个学科最难,有的说是哲学,有的说是宇宙学,还有说数学的 2020-04-26 …
常数与函数的转化常数1是怎么转化成tan45°的(也就是说tan几度=1.7),它是怎么算出来的( 2020-05-13 …
请问一道简单的小学英语语法题,Thesunrisesearlyandsetslate,rise和s 2020-05-13 …
刚买的电暖袋加热后有股刺鼻的化学气味请问这种刺鼻的化学气味有害健康吗?用几天了还有这股味,牌子是健 2020-05-14 …
大学是怎么样上课的?我想学很多东西可以既学哲学又学心理学经济学还有计算机吗,这样会很忙不?一般人都 2020-05-14 …
我们在学静电场.就学到场强和电荷在这个电场中受到的力还有这个电荷量有这样的一个关系E=F/q.资料 2020-06-06 …
泛函分析是干什么的?能否详细讲解一下希尔伯特空间的性质和定理,还有这和巴拿赫空间有什么区别?为什么 2020-06-08 …
上职高学语文数学英语语文不用说了数学学些什么英语我一窍不通怎么办怎么学还有学语数英时间多还是学技术 2020-06-10 …
我的数学还有没有希望了?我这次单元测验,考的是整式的乘除和因式分解我考得很差,62分上个单元我考了 2020-06-26 …